Farran / Bejancu | Geometry of Pseudo-Finsler Submanifolds | Buch | 978-0-7923-6664-5 | sack.de

Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1200 g

Reihe: Mathematics and Its Applications

Farran / Bejancu

Geometry of Pseudo-Finsler Submanifolds


2000
ISBN: 978-0-7923-6664-5
Verlag: Springer Netherlands

Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1200 g

Reihe: Mathematics and Its Applications

ISBN: 978-0-7923-6664-5
Verlag: Springer Netherlands


Finsler geometry is the most natural generalization of Riemannian geo metry. It started in 1918 when P. Finsler [1] wrote his thesis on curves and surfaces in what he called generalized metric spaces. Studying the geometry of those spaces (which where named Finsler spaces or Finsler manifolds) became an area of active research. Many important results on the subject have been brought together in several monographs (cf., H. Rund [3], G. Asanov [1], M. Matsumoto [6], A. Bejancu [8], P. L. Antonelli, R. S. Ingar den and M. Matsumoto [1], M. Abate and G. Patrizio [1] and R. Miron [3]). However, the present book is the first in the literature that is entirely de voted to studying the geometry of submanifolds of a Finsler manifold. Our exposition is also different in many other respects. For example, we work on pseudo-Finsler manifolds where in general the Finsler metric is only non degenerate (rather than on the particular case of Finsler manifolds where the metric is positive definite). This is absolutely necessary for physical and biological applications of the subject. Secondly, we combine in our study both the classical coordinate approach and the modern coordinate-free ap proach. Thirdly, our pseudo-Finsler manifolds F = (M, M', F*) are such that the geometric objects under study are defined on an open submani fold M' of the tangent bundle T M, where M' need not be equal to the entire TMo = TM\O(M).

Farran / Bejancu Geometry of Pseudo-Finsler Submanifolds jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Pseudo-Finsler Manifolds.- 2. Pseudo-Finsler Submanifolds.- 3. Special Immersions of Pseudo-Finsler Manifolds.- 4. Geometry of Curves in Finsler Manifolds.- 5. Pseudo-Finsler Hypersurfaces.- 6. Finsler Surfaces.- Basic Notations and Terminology.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.