Feckan / Pospisil / Pospísil | Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems | Buch | 978-0-12-804294-6 | sack.de

Buch, Englisch, 260 Seiten, Format (B × H): 241 mm x 199 mm, Gewicht: 1040 g

Feckan / Pospisil / Pospísil

Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems


Erscheinungsjahr 2016
ISBN: 978-0-12-804294-6
Verlag: Elsevier Science Publishing Co Inc

Buch, Englisch, 260 Seiten, Format (B × H): 241 mm x 199 mm, Gewicht: 1040 g

ISBN: 978-0-12-804294-6
Verlag: Elsevier Science Publishing Co Inc


Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions.

The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincaré mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity.

Feckan / Pospisil / Pospísil Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems jetzt bestellen!

Weitere Infos & Material


An introductory example

I. Piecewise-smooth systems of forced ODEs

I.2. Bifurcation from family of periodic orbits in autonomous systems

I.3. Bifurcation from single periodic orbit in autonomous systems

I.4. Sliding solution of periodically perturbed systems

I.5. Weakly coupled oscillators

Reference

II. Forced hybrid systems

II.1. Periodically forced impact systems

II.2. Bifurcation from family of periodic orbits in forced billiards

Reference

III. Continuous approximations of non-smooth systems

III.1. Transversal periodic orbits

III.2. Sliding periodic orbits

III.3. Impact periodic orbits

III.4. Approximation and dynamics

Reference

Appendix


Feckan, Michal
Professor Michal Feckan works at the Department of Mathematical Analysis and Numerical Mathematics at the Faculty of Mathematics, Physics, and Informatics at Comenius University. He specializes in nonlinear functional analysis, and dynamic systems and their applications. There is much interest in his contribution to the analysis of solutions of equations with fractional derivatives. Feckan has written several scientific monographs that have been published at top international publishing houses

Pospísil, Michal
Michal Pospísil is senior researcher at the Mathematical Institute of Slovak Academy of Sciences in Bratislava, Slovak Republic. He obtained his Ph.D. (applied mathematics) from the Mathematical Institute of Slovak Academy of Sciences in Bratislava, Slovak Republic. He is interested in discontinuous dynamical systems and delayed differential equations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.