Buch, Englisch, 432 Seiten, Format (B × H): 189 mm x 246 mm, Gewicht: 833 g
An Elementary Introduction
Buch, Englisch, 432 Seiten, Format (B × H): 189 mm x 246 mm, Gewicht: 833 g
ISBN: 978-0-19-956644-0
Verlag: Oxford University Press
This book provides the reader with an elementary introduction to chaos and fractals, suitable for students with a background in elementary algebra, without assuming prior coursework in calculus or physics. It introduces the key phenomena of chaos - aperiodicity, sensitive dependence on initial conditions, bifurcations - via simple iterated functions. Fractals are introduced as self-similar geometric objects and analyzed with the self-similarity and box-counting
dimensions. After a brief discussion of power laws, subsequent chapters explore Julia Sets and the Mandelbrot Set. The last part of the book examines two-dimensional dynamical systems, strange attractors, cellular automata, and chaotic differential equations.
The book is richly illustrated and includes over 200 end-of-chapter exercises. A flexible format and a clear and succinct writing style make it a good choice for introductory courses in chaos and fractals.
Zielgruppe
Undergraduate students and lecturers on specialist and non-specialist courses in physics and mathematics.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
I. Introducing Discrete Dynamical Systems
0: Opening Remarks
1: Functions
2: Iterating Functions
3: Qualitative Dynamics
4: Time Series Plots
5: Graphical Iteration
6: Iterating Linear Functions
7: Population Models
8: Newton, Laplace, and Determinism
II. Chaos
9: Chaos and the Logistic Equation
10: The Buttery Effect
11: The Bifurcation Diagram
12: Universality
13: Statistical Stability of Chaos
14: Determinism, Randomness, and Nonlinearity
III. Fractals
15: Introducing Fractals
16: Dimensions
17: Random Fractals
18: The Box-Counting Dimension
19: When do Averages exist?
20: Power Laws and Long Tails
20: Introducing Julia Sets
21: Infinities, Big and Small
IV. Julia Sets and The Mandelbrot Set
22: Introducing Julia Sets
23: Complex Numbers
24: Julia Sets for f(z) = z2 + c
25: The Mandelbrot Set
V. Higher-Dimensional Systems
26: Two-Dimensional Discrete Dynamical Systems
27: Cellular Automata
28: Introduction to Differential Equations
29: One-Dimensional Differential Equations
30: Two-Dimensional Differential Equations
31: Chaotic Differential Equations and Strange Attractors
VI. Conclusion
32: Conclusion
VII. Appendices
A: Review of Selected Topics from Algebra
B: Histograms and Distributions
C: Suggestions for Further Reading