Buch, Englisch, 392 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g
Reihe: Sources and Studies in the History of Mathematics and Physical Sciences
Buch, Englisch, 392 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g
Reihe: Sources and Studies in the History of Mathematics and Physical Sciences
ISBN: 978-1-4419-2520-6
Verlag: Springer
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
Weitere Infos & Material
From the beginnings of the 17th century to about 1720: Convergence and formal manipulation.- Series before the rise of the calculus.- Geometrical quantities and series in Leibniz.- The Bernoulli series and Leibniz’s analogy.- Newton’s method of series.- Jacob Bernoulli’s treatise on series.- The Taylor series.- Quantities and their representations.- The formal-quantitative theory of series.- The first appearance of divergent series.- From the 1720s to the 1760s: The development of a more formal conception.- De Moivre’s recurrent series and Bernoulli’s method.- Acceleration of series and Stirling’s series.- Maclaurin’s contribution.- The young Euler between innovation and tradition.- Euler’s derivation of the Euler–Maclaurin summation formula.- On the sum of an asymptotic series.- Infinite products and continued fractions.- Series and number theory.- Analysis after the 1740s.- The formal concept of series.- The theory of series after 1760: Successes and problems of the triumphant formalism.- Lagrange inversion theorem.- Toward the calculus of operations.- Laplace’s calculus of generating functions.- The problem of analytical representation of nonelementary quantities.- Inexplicable functions.- Integration and functions.- Series and differential equations.- Trigonometric series.- Further developments of the formal theory of series.- Attempts to introduce new transcendental functions.- D’Alembert and Lagrange and the inequality technique.- The decline of the formal theory of series.- Fourier and Fourier series.- Gauss and the hypergeometric series.- Cauchy’s rejection of the 18th-century theory of series.