Buch, Englisch, 294 Seiten, PB, Format (B × H): 157 mm x 235 mm, Gewicht: 399 g
Buch, Englisch, 294 Seiten, PB, Format (B × H): 157 mm x 235 mm, Gewicht: 399 g
Reihe: Chapman Hall/CRC Mathematics Series
ISBN: 978-0-412-57680-5
Verlag: Taylor & Francis Ltd
This introductory text acts as a singular resource for undergraduates learning the fundamental principles and applications of integration theory.
Chapters discuss: function spaces and functionals, extension of Daniell spaces, measures of Hausdorff spaces, spaces of measures, elements of the theory of real functions on R.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction, Function Spaces and Functionals, Ordered Sets, Lattices, The Spaces RX and R-X, Vector Lattices of Functions, Functionals, Daniell Spaces, The Extension of Daniell Spaces, Upper Functions, Lower Functions, The Closure of (x, L, I), Convergence of Theorems in (x, L(L), I), Examples, Null Functions and Null Sets, Integrability, Examples, The Induction Principle, Summary, Measure and Integral, The Extension of Positive Measure Spaces, Examples, Locally Integrable Functions, Product Measures, Fubini's Theorem, Measures of Hausdorff Spaces, Lp-Spaces, Vector Lattices, Lp-Spaces, Spaces of Measures, The Vector Lattice Structure, The Variation, Hahn's Theorem, Absolute Continuity, The Radon-Nikodym Theorem, Elements of the Theory of Real Functions on R, Functions of Locally Finite Variation, Absolutely Continuous Functions