Finch | Applied Regularization Methods for the Social Sciences | Buch | 978-1-032-20947-0 | sack.de

Buch, Englisch, 305 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 471 g

Reihe: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences

Finch

Applied Regularization Methods for the Social Sciences


1. Auflage 2024
ISBN: 978-1-032-20947-0
Verlag: Chapman and Hall/CRC

Buch, Englisch, 305 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 471 g

Reihe: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences

ISBN: 978-1-032-20947-0
Verlag: Chapman and Hall/CRC


Researchers in the social sciences are faced with complex data sets in which they have relatively small samples and many variables (high dimensional data). Unlike the various technical guides currently on the market, Applied Regularization Methods for the Social Sciences provides and overview of a variety of models alongside clear examples of hands-on application. Each chapter in this book covers a specific application of regularization techniques with a user-friendly technical description, followed by examples that provide a thorough demonstration of the methods in action.

Key Features:

- Description of regularization methods in a user friendly and easy to read manner

- Inclusion of regularization-based approaches for a variety of statistical analyses commonly used in the social sciences, including both univariate and multivariate models

- Fully developed extended examples using multiple software packages, including R, SAS, and SPSS

- Website containing all datasets and software scripts used in the examples

- Inclusion of both frequentist and Bayesian regularization approaches

- Application exercises for each chapter that instructors could use in class, and independent researchers could use to practice what they have learned from the book

Finch Applied Regularization Methods for the Social Sciences jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. Introduction. 2. Theoretical underpinnings of regularization methods. 3. Regularization methods for linear models. 4. Regularization methods for generalized linear models. 5. Regularization methods for multivariate linear models. 6. Regularization methods for cluster analysis and principal components analysis. 7. Regularization methods for latent variable models. 8. Regularization methods for multilevel models. 9. Advanced topics in feature selection.


Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at BSU, and a professor of statistics and psychometrics. His research interests include structural equation modeling, item response theory, educational and psychological measurement, multilevel modeling, machine learning, and robust multivariate inference. In addition to conducting research in the field of statistics, he also regularly collaborates with colleagues in fields such as educational psychology, neuropsychology, and exercise physiology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.