Buch, Englisch, 487 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 783 g
Reihe: NanoScience and Technology
Buch, Englisch, 487 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 783 g
Reihe: NanoScience and Technology
ISBN: 978-3-642-43843-1
Verlag: Springer
This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Quantum Ring: A Unique Playground for the Quantum-Mechanical Paradigm.- Fabrication, Characterization and Physical Properties.- Growth and Spectroscopy of Semiconductor Quantum Rings.- Quantum Rings: Fabrication and Optical Properties.- Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling.- Scanning-probe Electronic Imaging of Lithographically Patterned Quantum Rings.- Self-organized Formation and XSTM-Characterization of GaSb/GaAsQuantum Rings.- Self-assembled Semiconductor Quantum Rings Complexes by Droplet Epitaxy: Growth and Physical Properties.- Aharonov-Bohm Effect for Excitons.- New Versions of the Aharonov-Bohm Effect in Quantum Rings.- Aharonov-Bohm Effect for Neutral Exctions in Quantum Rings.- Optical Aharonov-Bohm Effect in Type-II Quantum Dots.- Theory.- Strained Quantum Rings.- Theoretical Modeling of Electronic and Optical Properties of Semiconductor Quantum Rings.- Coulomb Interaction in Finite-Width Quantum Rings. Differential Geometry Applied to Rings and Möbius Nanostructures.- Hole Mixing in Semiconductor Quantum Rings.- Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures.