E-Book, Englisch, Band 22, 368 Seiten, eBook
Reihe: International Series in Operations Research & Management Science
Fox Strategies for Quasi-Monte Carlo
Erscheinungsjahr 2012
ISBN: 978-1-4615-5221-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 22, 368 Seiten, eBook
Reihe: International Series in Operations Research & Management Science
ISBN: 978-1-4615-5221-5
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1 Introduction.- 1.1 Setting up the (X, Y)-decomposition.- 1.2 Examples.- 1.3 Antecedents.- 1.4 Exploiting the (X, Y)-decomposition.- 1.5 A hybrid with RQMC.- 1.6 Generating Gaussian processes: foretaste.- 1.7 Scope of recursive conditioning.- 1.8 Ranking variables.- 2 Smoothing.- 2.1 Poisson case.- 2.2 Separable problems.- 2.3 Brownian motion — finance — PDEs.- 2.4 The Poisson case revisted.- 2.5 General considerations.- 3 Generating Poisson Processes.- 3.1 Computational complexity.- 3.2 Variance.- 3.3 The median-based method.- 3.4 The terminal pass.- 3.5 The midpoint-based method.- 3.6 Stochastic geometry.- 3.7 Extensions.- 4 Permuting Order Statistics.- 4.1 Motivating example.- 4.2 Approach.- 4.3 Relation to Latin supercubes.- 4.4 Comparison of anomalies blockwise.- 5 GENERATING BERNOULLI TRIALS.- 5.1 The third tree-like algorithm.- 5.2 Variance.- 5.3 Extensions.- 5.4 q-Blocks.- 6 Generating Gaussian Processes.- 6.1 Brownian-bridge methods.- 6.2 Overview of remaining sections.- 6.3 Principal-components methods.- 6.4 Piecewise approach.- 6.5 Gaussian random fields.- 6.6 A negative result.- 6.7 Linear-algebra software.- 7 Smoothing Summation.- 7.1 Smoothing the naive estimator.- 7.2 Smoothing importance sampling.- 7.3 Multiple indices ? single index.- 7.4 Properties.- 7.5 Remarks.- 8 Smoothing Variate Generation.- 8.1 Applying it to one variate.- 8.2 Applying it to several variates.- 9 Analysis Of Variance.- 9.1 Variance in the one-dimensional case.- 9.2 Weakening the smoothness condition?.- 9.3 Nested decomposition.- 9.4 Dynamic blocks.- 9.5 Stratification linked to quasi-Monte Carlo.- 9.6 The second term.- 10 Bernoulli Trials: Examples.- 10.1 Linearity in trial indicators.- 10.2 Continuous-state Markov chains.- 10.3 Weight windows and skewness attenuation.-10.4 Network reliability.- 11 Poisson Processes: Auxiliary Matter.- 11.1 Generating ordered uniforms.- 11.2 Generating betas.- 11.3 Generating binomials.- 11.4 Stratifying Poisson distributions.- 11.5 Recursive variance quartering.- 12 Background On Deterministic QMC.- 12.1 The role of quasi-Monte Carlo.- 12.2 Nets.- 12.3 Discrepancy.- 12.4 Truncating to get bounded variation.- 12.5 Electronic access.- 13 OPTIMIZATION.- 13.1 Global optimization over the unit cube.- 13.2 Dynamic programming over the unit cube.- 13.3 Stochastic programming.- 14 Background on Randomized QMC.- 14.1 Randomizing nets.- 14.2 Randomizing lattices.- 14.3 Latin hypercubes.- 14.4 Latin supercubes.- 15 Pseudocodes.- 15.1 Randomizing nets.- 15.2 Poisson processes: via medians.- 15.3 Poisson processes: via midpoints.- 15.4 Bernoulli trials: via equipartitions.- 15.5 Order statistics: positioning extremes.- 15.6 Generating ordered uniforms.- 15.7 Discrete summation: index recovery.