Fredrickson / Delaney | Field-Theoretic Simulations in Soft Matter and Quantum Fluids | Buch | 978-0-19-284748-5 | sack.de

Buch, Englisch, Band 173, 400 Seiten, Format (B × H): 174 mm x 250 mm, Gewicht: 960 g

Reihe: International Series of Monographs on Physics

Fredrickson / Delaney

Field-Theoretic Simulations in Soft Matter and Quantum Fluids


Erscheinungsjahr 2023
ISBN: 978-0-19-284748-5
Verlag: Oxford University Press

Buch, Englisch, Band 173, 400 Seiten, Format (B × H): 174 mm x 250 mm, Gewicht: 960 g

Reihe: International Series of Monographs on Physics

ISBN: 978-0-19-284748-5
Verlag: Oxford University Press


This monograph provides an introduction to field-theoretic simulations in classical soft matter and Bose quantum fluids. The method represents a new class of molecular computer simulation in which continuous fields, rather than particle coordinates, are sampled and evolved. Field-theoretic simulations are capable of analysing the properties of systems that are challenging for traditional simulation techniques, including dense phases of high molecular weight polymers, self-assembling fluids, and quantum fluids at finite temperature.

The monograph details analytical methods for converting classical and quantum many-body problems to equilibrium field theory models with a molecular basis. Numerical methods are described that enable efficient, accurate, and scalable simulations of such models on modern computer hardware, including graphics processing units (GPUs). Extensions to non-equilibrium systems are discussed, along with an introduction to advanced field-theoretic simulation techniques including free energy estimation, alternative ensembles, coarse-graining, and variable cell methods.

Fredrickson / Delaney Field-Theoretic Simulations in Soft Matter and Quantum Fluids jetzt bestellen!

Weitere Infos & Material


Glenn H. Fredrickson is a soft matter theorist recognized for his work on self-assembling polymers, especially block copolymers. He pioneered the “field-theoretic simulation” technique that has been widely deployed to assess the structure and phase behavior of complex, multiphase polymer systems. Fredrickson was born in Washington, D.C., and grew up in Indialantic, Florida. He graduated from the University of Florida with a B.S. degree in chemical engineering and received M.S. and Ph.D. degrees in the same discipline from Stanford University. In 1984, he joined AT&T Bell Laboratories as a Member of Technical Staff, and moved to the University of California, Santa Barbara (UCSB) in 1990 as a Professor of Chemical Engineering and Materials. Fredrickson is currently a Distinguished Professor at UCSB. He is a member of the National Academy of Sciences and the National Academy of Engineering of the USA.

Kris T. Delaney is a condensed matter physicist with expertise in polymer physics, quantum many-body theory, magnetism, numerical analysis, and high-performance computing. Delaney was born in Warrington, United Kingdom, and received his M.Phys. and Ph.D. degrees in theoretical physics and physics, respectively, from the University of York. Following postdoctoral work in physics at the University of Illinois at Urbana-Champaign, he joined the Materials Research Laboratory at the University of California, Santa Barbara, in 2006, where he is currently a Project Scientist.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.