Fridman / Gorkavyi | Physics of Planetary Rings | Buch | 978-3-540-64864-2 | sack.de

Buch, Englisch, 437 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g

Reihe: Astronomy and Astrophysics Library

Fridman / Gorkavyi

Physics of Planetary Rings

Celestial Mechanics of Continuous Media
1999
ISBN: 978-3-540-64864-2
Verlag: Springer Berlin Heidelberg

Celestial Mechanics of Continuous Media

Buch, Englisch, 437 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1830 g

Reihe: Astronomy and Astrophysics Library

ISBN: 978-3-540-64864-2
Verlag: Springer Berlin Heidelberg


Physics of Planetary Rings describes striking structures of the planetary rings of Saturn, Uranus, Jupiter, and Neptune: Narrow ringlets, spiral waves, and a chain of clumps. The author has contributed essential ideas to the full understanding of planetary rings via the stability analysis of dynamical systems. The combination of a high-quality description, the set of interesting illustrations, as well as the fascinating and natural presentation will make this book of considerable interest to astronomers, physicists, and mathematicians as well as students. There is no competing text for this book so far.
Fridman / Gorkavyi Physics of Planetary Rings jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction.- 2. Observational Data.- 3. Celestial Mechanics Minimum.- 4. Elementary Particle Dynamics. I Rigid Body Collisions.- 5. Elementary Particle Dynamics. II Ring Cosmogony.- 6. Elementary Particle Dynamics. III Wave, Photometric, and Other Effects.- 7. Collective Dynamics of Disc Particles. I Formalism.- 8. Collective Dynamics of Disc Particles. II Stability Analysis.- 9. Resonance Effects in Planetary Rings. I Spiral Waves.- 10. Resonance Effects in Planetary Rings. II Narrow Ringlets and Satellites.- 11. Formation and Stability of the Uranian Rings.- 12. Origin, Dynamics, and Stability of the Neptunian Rings.- 13. Self-organisation of the Solar System.- 14. Space Studies of the Outer Planets.- Conclusion.- Appendices I. The Possibility of Studying the Dynamics of Astrophysical Discs in a Two-Dimensional Approach.- 1. Introduction.- 2. Original Equations for the “Volume” Functions.- 2.1 Initial Dynamic Equations.- 2.2 Equation of State.- 3. Derivation of the Basic Equations for the “Plane” Functions.- 3.1 Order-of-Magnitude Estimates of the Terms in the Initial Equations.- 3.2 The Two Limiting Cases of Astrophysical Discs.- 3.3 Limitations of the Characteristic Times of Processes Studied in the Two-Dimensional Approximation.- 3.4 Closed System of Integro-differential Equations for a Barotropic Disc.- 4. Closed Set of Differential Equations for a Polytropic Disc in an External Gravitational Field.- 4.1 Derivation of the Two-Dimensional Equations.- 5. Closed Set of Differential Equations for a Polytropic Self-gravitating Disc.- 5.1 Derivation of the Two-Dimensional Equations.- 5.2 Why Does the Gradient of the Plane Pressure Not Have the Physical Meaning of a Force?.- 6. Conclusion.- 1. Derivation of a Closed Set of Integro-differential Equations.- 2.Derivation of the Dispersion Equation Describing the Three-Dimensional Perturbations.- 4. Dispersion Relation for Waves in the Plane of the Disc.- 5. The Role of Perturbations Along the Rotation Axis.- 5.1 Condition for Neglecting Mass Transfer Along the Rotation Axis.- 5.1.1 General Case.- 5.1.2 Isothermal Disc.- 6. Conclusion.- III. Derivation of the Linearised Equations for Oscillations of a Viscous Disc.- 1. Derivation of the Linearised Equations for Oscillations of a Viscous Uniformly Rotating Disc.- 2. Derivation of the Linearised Equations for Oscillations of a Viscous Differentially Rotating Disc of Inelastic Particles with Account of External Matter Fluxes.- 3. Derivation of the General Dispersion Equation.- IV. Evaluating the Gravitational Potential Inside and Outside a Triaxial Ellipsoid.- 1. Potential Inside the Ellipsoid.- 2. Potential Outside the Ellipsoid.- V. A Drift Mechanism for the Formation of the Cassini Division.- 1. Introduction.- 2. Statement of the Problem.- 3. Derivation of the Non-linear Momentum Conservation Equations.- 4. Time-Averaged Non-linear Momentum Conservation Equations.- 5. Absence of Averaged Radial Mass Flux in a Dissipationless Disc. Large-Scale Convection.- 6. Radial Mass Transfer in a Viscous Disc.- 7. Evolution of the Surface Density of a Disc.- 8. Conditions for the Formation of Different Types of Resonant Structures: Gaps or Wavetrains?.- 9. Estimate of the Maximum Width of a Gap Produced by a Density Wave.- 10. Some Additional Remarks.- VI. Resonance Structures in Saturn’s C Ring.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.