Buch, Englisch, 224 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 5221 g
Models and Applications
Buch, Englisch, 224 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 5221 g
Reihe: Advanced Information and Knowledge Processing
ISBN: 978-3-319-60175-5
Verlag: Springer International Publishing
Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
Introduction.- Fundamentals of Robust Representations.- Part 1: Robust Representation Models.- Robust Graph Construction.- Robust Subspace Learning.- Robust Multi-View Subspace Learning.- Part 11: Applications.- Robust Representations for Collaborative Filtering.- Robust Representations for Response Prediction.- Robust Representations for Outlier Detection.- Robust Representations for Person Re-Identification.- Robust Representations for Community Detection.- Index.