E-Book, Englisch, 333 Seiten
Fukuyama Fault-Zone Properties and Earthquake Rupture Dynamics
1. Auflage 2009
ISBN: 978-0-08-092246-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 333 Seiten
ISBN: 978-0-08-092246-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The dynamics of the earthquake rupture process are closely related to fault zone properties which the authors have intensively investigated by various observations in the field as well as by laboratory experiments. These include geological investigation of the active and fossil faults, physical and chemical features obtained by the laboratory experiments, as well as the seismological estimation from seismic waveforms. Earthquake dynamic rupture can now be modeled using numerical simulations on the basis of field and laboratory observations, which should be very useful for understanding earthquake rupture dynamics.
Features:
* First overview of new and improved techniques in the study of earthquake faulting
* Broad coverage
* Full color
Benefits:
* A must-have for all geophysicists who work on earthquake dynamics
* Single resource for all aspects of earthquake dynamics (from lab measurements to seismological observations to numerical modelling)
* Bridges the disciplines of seismology, structural geology and rock mechanics
* Helps readers to understand and interpret graphs and maps
Also has potential use as a supplementary resource for upper division and graduate geophysics courses.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Fault-Zone Properties and Earthquake Rupture Dynamics;4
3;Copyright Page;5
4;Contents;6
5;Preface;12
6;Foreword;14
7;List of Contributors;16
8;Chapter 1: Introduction;18
8.1;Fault-Zone Properties and Earthquake Rupture Dynamics;18
8.2;References;24
9;Chapter 2: Geometry and Slip Distribution of Coseismic Surface Ruptures Produced by the 2001 Kunlun, Northern Tibet, Earthquake;32
9.1;1. Introduction;33
9.2;2. Tectonic Setting;35
9.3;3. Deformation Characteristics of the 2001 Coseismic Surface Rupture;36
9.3.1;3.1. Geometric Distribution and Deformational Structure;36
9.3.2;3.2. Coseismic Slip Distribution;41
9.3.2.1;3.2.1. Measurement Method of Strike-Slip Offset;41
9.3.2.2;3.2.2. Field Observations;43
9.3.2.3;3.2.3. Analysis of High-Resolution Remote Sensing Images;45
9.3.2.4;3.2.4. Seismic Inversion Results;46
9.4;4. Discussion;47
9.4.1;4.1. Relationship between the Coseismic Surface Rupture and Preexisting Fault;47
9.4.2;4.2. Coseismic Strike-Slip Displacement;48
9.5;5. Conclusions;50
9.6;Acknowledgments;51
9.7;References;51
10;Chapter 3: Aseismic-Seismic Transition and Fluid Regime along Subduction Plate Boundaries and a Fossil Example from the Northern Apennines of Italy;54
10.1;1. Introduction;55
10.2;2. Deformation and Seismogenesis at Accretionary and Erosive Subduction Margins;57
10.3;3. Seismogenic Zone: Definition;59
10.4;4. Slow Slip Events and Seismic Tremors;63
10.5;5. Seismically Produced Structures;65
10.6;6. The Up-Dip Limit of Seismogenesis in a Fossil Erosive Subduction Channel;69
10.6.1;6.1. Subduction Channel Architecture;70
10.6.2;6.2. Subduction Channel Internal Structure: A Low-Friction Plate Boundary;72
10.7;7. Discussion and Comparison between Erosive and Accretionary Seismogenic Zones;75
10.8;8. Conclusions and Future Perspective;76
10.9;References;77
11;Chapter 4: Fault Zone Structure and Deformation Processes along an Exhumed Low-Angle Normal Fault;86
11.1;1. Introduction;87
11.2;2. Regional Setting;88
11.3;3. Fault Zone Architecture;90
11.3.1;3.1. Geometry and Kinematics;90
11.3.2;3.2. Fault Rock Distribution and Microstructures;92
11.4;4. Discussion;95
11.4.1;4.1. Fault Rock Evolution;95
11.4.2;4.2. The Mechanical Paradox of Low-Angle Normal Faults;96
11.4.3;4.3. A Slip Model for Low-Angle Normal Faults (Evidences That ZF Was Active as LANF);97
11.5;5. Conclusions;99
11.6;References;100
12;Chapter 5: Pseudotachylytes and Earthquake Source Mechanics;104
12.1;1. Introduction;104
12.2;2. Pseudotachylytes;106
12.2.1;2.1. Mesoscale Geometry of Pseudotachylyte;107
12.2.2;2.2. Microstructures and Geochemistry in Pseudotachylytes;108
12.2.3;2.3. Temperature Estimate of Frictional Melts;110
12.2.4;2.4. Distribution of Tectonic Pseudotachylytes;111
12.2.5;2.5. Production of Pseudotachylytes;112
12.3;3. A Natural Laboratory of an Exhumed Seismogenic Source;117
12.4;4. Rupture Dynamics;121
12.4.1;4.1. Transient Stress Pattern;121
12.4.2;4.2. Examples of Transient Stress Markers Observed;122
12.5;5. Dynamic Fault Strength;127
12.5.1;5.1. Field Estimates;128
12.5.2;5.2. Experimental Results;130
12.5.3;5.3. Theoretical Estimates;133
12.6;6. Discussions and Conclusions;137
12.6.1;6.1. A New Approach to the Study of Exhumed Pseudotachylyte-Bearing Faults;140
12.7;Acknowledgments;142
12.8;References;142
13;Chapter 6: The Critical Slip Distance for Seismic and Aseismic Fault Zones of Finite Width;152
13.1;1. Introduction;153
13.2;2. Friction Laws and the Transition from Static to Kinetic Friction;156
13.3;3. Contact Model for the Critical Slip Distance of Solid Surfaces and Shear Zones;157
13.4;4. Model for a Shear Zone of Finite Thickness;160
13.5;5. Results;163
13.6;6. Implications for Scaling of the Dynamic Slip Weakening Distance;168
13.7;7. Discussion;171
13.8;Acknowledgments;175
13.9;References;175
14;Chapter 7: Scaling of Slip Weakening Distance with Final Slip during Dynamic Earthquake Rupture;180
14.1;1. Introduction;181
14.2;2. Rupture History from Kinematic Source Models;184
14.3;3. Inferring Traction Evolution;186
14.4;4. Measuring Dcprime from Peak Slip Velocity;189
14.5;5. Measuring Dc from Inferred Traction Evolution Curves;191
14.6;6. Scaling Between Dc and Final Slip;196
14.7;7. Discussion and Concluding Remarks;197
14.8;Acknowledgments;200
14.9;References;200
15;Chapter 8: Rupture Dynamics on Bimaterial Faults and Nonlinear Off-Fault Damage;204
15.1;1. Introduction;204
15.2;2. Formation of Damage Zone due to Dynamic Fault Growth;208
15.2.1;2.1. Inference about Orientation and Distribution of Secondary Fractures;208
15.2.2;2.2. Modeling of Generation of Tensile Microfractures;210
15.2.3;2.3. Modeling of Dynamic Generation of Mesoscopic Shear Branches;212
15.2.4;2.4. Effects of Damage on Earthquake Rupture in a Poroelastic Medium;213
15.2.5;2.5. Rheology of Damage Zone;214
15.3;3. Fault Growth on a Bimaterial Interface;216
15.3.1;3.1. Field Observation of Faults;216
15.3.2;3.2. Quasi-Static Features of In-Plane Tensile Crack;216
15.3.3;3.3. Theoretical and Numerical Studies of Dynamic Fault Slip;216
15.3.4;3.4. Regularization of an Ill-Posed Problem;222
15.3.5;3.5. Poroelastic Bimaterial Effects on Fault Slip;223
15.3.6;3.6. How Much Are Earthquake Ruptures Influenced by Bimaterial Effects?;224
15.3.7;3.7. Macroscopic Parameter Affected by the Existence of Fault at Bimaterial Interface;226
15.4;4. Concluding Remarks;226
15.5;Acknowledgments;227
15.6;References;227
16;Chapter 9: Boundary Integral Equation Method for Earthquake Rupture Dynamics;234
16.1;1. Introduction;234
16.2;2. Basic Equations;235
16.2.1;2.1. General Description;235
16.2.2;2.2. Planar Fault of Two-Dimensional Nature;238
16.2.3;2.3. Three- and Two-Dimensional Green's Functions;240
16.2.4;2.4. Planar Fault of Three-Dimensional Nature;242
16.3;3. Regularization;243
16.3.1;3.1. Hypersingularities in the Integration Kernels;243
16.3.2;3.2. Planar Two-Dimensional Antiplane Fault;244
16.3.3;3.3. Planar Three-Dimensional Fault;245
16.3.4;3.4. Planar Two-Dimensional In-Plane Fault;248
16.3.5;3.5. Isolating the Instantaneous Response Term;249
16.4;4. Spatiotemporal Discretization;250
16.4.1;4.1. Boundary Elements and Time Steps;250
16.4.2;4.2. Discretizing the Equations;251
16.4.3;4.3. Implicit Time-Marching Scheme;254
16.4.4;4.4. Courant-Friedrichs-Lewy Condition and the Explicit Time-Marching Scheme;254
16.5;5. Evaluating Discrete Integration Kernels;256
16.5.1;5.1. Planar Two-Dimensional Antiplane Fault;256
16.5.2;5.2. Planar Two-Dimensional In-Plane Fault;260
16.5.3;5.3. Planar Three-Dimensional Fault;262
16.5.4;5.4. Interface with the Two-Dimensional Theory;264
16.6;6. Dealing With Nonplanar Faults;265
16.6.1;6.1. Overview;265
16.6.2;6.2. Evaluating Discrete Integration Kernels;267
16.6.3;6.3. Inventory of Available Stress Response Functions;269
16.6.3.1;6.3.1. Linear Fault Element in a Two-Dimensional Medium (Figure11a);269
16.6.3.2;6.3.2. Rectangular Fault Element in a Three-Dimensional Medium (Figure11b);270
16.6.3.3;6.3.3. Triangular Fault Element in a Three-Dimensional Medium (Figure11c);271
16.6.4;6.4. Numerical Modeling Studies in the Literature;271
16.7;7. Numerical Stability;272
16.8;8. Related Topics;273
16.8.1;8.1. Fracture Criterion;273
16.8.2;8.2. Formulation in the Fourier and Laplace Domains;274
16.8.3;8.3. Displacement Discontinuity BIEM;275
16.8.4;8.4. Fault Opening;275
16.8.5;8.5. Faults in a Half-Space;277
16.8.6;8.6. Galerkin Method;279
16.9;9. Conclusion;280
16.10;Acknowledgments;280
16.11;References;280
17;Chapter 10: Dynamic Rupture Propagation of the 1995 Kobe, Japan, Earthquake;286
17.1;1. Introduction;286
17.2;2. Computation Method;289
17.3;3. Fault Model;290
17.4;4. Computation Results;292
17.5;5. Discussion and Conclusion;294
17.6;Acknowledgments;296
17.7;References;296
18;List of Abbreviations;302
19;Index;306
20;Color Plates;322