Galaktionov / Mitidieri / Pohozaev | Blow-Up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations | Buch | 978-1-4822-5172-2 | sack.de

Buch, Englisch, 569 Seiten, Format (B × H): 157 mm x 234 mm, Gewicht: 885 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Galaktionov / Mitidieri / Pohozaev

Blow-Up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations


1. Auflage 2014
ISBN: 978-1-4822-5172-2
Verlag: CRC Press

Buch, Englisch, 569 Seiten, Format (B × H): 157 mm x 234 mm, Gewicht: 885 g

Reihe: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

ISBN: 978-1-4822-5172-2
Verlag: CRC Press


Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.

The book first studies the particular self-similar singularity solutions (patterns) of the equations. This approach allows four different classes of nonlinear PDEs to be treated simultaneously to establish their striking common features. The book describes many properties of the equations and examines traditional questions of existence/nonexistence, uniqueness/nonuniqueness, global asymptotics, regularizations, shock-wave theory, and various blow-up singularities.

Preparing readers for more advanced mathematical PDE analysis, the book demonstrates that quasilinear degenerate higher-order PDEs, even exotic and awkward ones, are not as daunting as they first appear. It also illustrates the deep features shared by several types of nonlinear PDEs and encourages readers to develop further this unifying PDE approach from other viewpoints.

Galaktionov / Mitidieri / Pohozaev Blow-Up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations jetzt bestellen!

Zielgruppe


Researchers and PhD students in applied mathematics; mathematical physicists; electrical engineers.

Weitere Infos & Material


Introduction. Complicated Self-Similar Blow-Up, Compacton, and Standing Wave Patterns for Four Nonlinear PDEs: A Unified Variational Approach to Elliptic Equations. Classification of Global Sign-Changing Solutions of Semilinear Heat Equations in the Subcritical Fujita Range: Second- and Higher-Order Diffusion. Global and Blow-Up Solutions for Kuramoto–Sivashinsky, Navier–Stokes, and Burnett Equations. Regional, Single-Point, and Global Blow-Up for a Fourth-Order Porous Medium-Type Equation with Source. Semilinear Fourth-Order Hyperbolic Equation: Two Types of Blow-Up Patterns. Quasilinear Fourth-Order Hyperbolic Boussinesq Equation: Shock, Rarefaction, and Fundamental Solutions. Blow-Up and Global Solutions for Korteweg–de Vries-Type Equations. Higher-Order Nonlinear Dispersion PDEs: Shock, Rarefaction, and Blow-Up Waves. Higher-Order Schrödinger Equations: From "Blow-Up" Zero Structures to Quasilinear Operators. References.


Victor A. Galaktionov, Enzo L. Mitidieri, Stanislav I. Pohozaev



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.