Buch, Englisch, 632 Seiten, Format (B × H): 167 mm x 246 mm, Gewicht: 1020 g
Science, Technology, and Applications
Buch, Englisch, 632 Seiten, Format (B × H): 167 mm x 246 mm, Gewicht: 1020 g
ISBN: 978-0-470-56210-9
Verlag: Wiley
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Technologie der Kunststoffe und Polymere
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Kautschuktechnologie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Verbundwerkstoffe
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Polymerwerkstoffe
Weitere Infos & Material
PREFACE xvii
CONTRIBUTORS xxi
SECTION I CLAYS FOR NANOCOMPOSITES
1 CLAYS AND CLAY MINERALS 3
1.1 What’s in a Name / 3
1.2 Multiscale Organization of Clay Minerals / 6
1.2.1 Dispersion Versus Aggregation / 6
1.2.2 Delamination/Exfoliation Versus Stacking / 6
1.3 Intimate Organization of the Layer / 8
1.3.1 Cationic and Neutral Clay Minerals / 8
1.3.2 Anionic Clay Minerals (O) / 21
1.4 Most Relevant Physicochemical Properties of Clay Mineral / 22
1.4.1 Surface Area and Porosity / 22
1.4.2 Chemical Landscape of the Clay Surfaces / 24
1.4.3 Cation (and Anion) Exchange Capacity / 24
1.4.4 Intercalation and Confinement in the Interlayer Space / 27
1.4.5 Swelling / 30
1.4.6 Rheology / 31
1.5 Availability of Natural Clays and Synthetic Clay Minerals / 33
1.6 Clays and (Modified) Clay Minerals as Fillers / 35
Acknowledgment / 37
References / 37
2 ORGANOPHILIC CLAY MINERALS 45
2.1 Organophilicity/Lipophilicity and the Hydrophilic/Lipophilic Balance (HLB) / 45
2.2 From Clays to Organoclays in Polymer Technology / 47
2.3 Methods of Organoclay Synthesis / 49
2.3.1 Cation Exchange from Solutions / 49
2.3.2 Solid-State Intercalation / 58
2.3.3 Grafting from Solution / 59
2.3.4 Direct Synthesis of Grafted Organoclays / 62
2.3.5 Postsynthesis Modifications of Organoclays: The “PCH” / 64
2.3.6 An Overview of Commercial Organoclays / 64
2.3.7 One-Pot CPN Formation / 66
2.4 Other Types of Clay Modifications for Clay-Based Nanomaterials / 66
2.4.1 Organo-Pillared Clays / 66
2.4.2 Plasma-Treated Clays / 69
2.5 Fine-Tuning of Organoclays Properties / 69
2.5.1 Maximizing the Dispersion of the Filler: Effect
of Surfactant/CEC Ratio / 69
2.5.2 Improving Thermal Stability / 70
2.5.3 Chemical Treatments / 71
2.5.4 Physical Treatments (Freeze-Drying, Sonication, Microwave) / 71
2.6 Some Introductory Reflections on Organoclay Polymer Nanocomposites / 72
References / 75
3 INDUSTRIAL TREATMENTS AND MODIFICATION OF CLAY MINERALS 87
3.1 Bentonite: From Mine to Plant / 87
3.1.1 A Largely Diffused Clay / 87
3.1.2 Geological Occurrence / 89
3.1.3 Mining / 89
3.2 Processing of Bentonite / 90
3.2.1 Modification of Bentonite Properties / 90
3.2.2 Processing Technologies / 91
3.3 Purification of Clay / 93
3.3.1 Influence of Clay Concentration / 94
3.3.2 Influence of Swelling Time / 94
3.3.3 Influence of Temperature / 95
3.4 Reaction of Clay with Organic Substances / 97
3.5 Particle Size Modification / 99
References / 99
4 ALKYLAMMONIUM CHAINS ON LAYERED CLAY MINERAL SURFACES 101
4.1 Structure and Dynamics / 101
4.1.1 Packing Density and Self-Assembly / 102
4.1.2 Dynamics and Diffusion at the Clay–Surfactant Interface / 110
4.1.3 Utility of Molecular Simulation to Obtain Molecular-Level Insight / 111
4.2 Thermal Properties / 111
4.2.1 Reversible Melting Transitions of Alkyl Chains in the Interlayer / 111
4.2.2 Solvent Evaporation and Thermal Elimination of Alkyl Surfactants / 113
4.3 Layer Separation and Miscibility with Polymers / 115
4.3.1 Thermodynamics Model for Exfoliation in Polymer Matrices / 115
4.3.2 Cleavage Energy / 116
4.3.3 Surface Energy / 121
4.4 Mechanical Properties of Clay Minerals / 121
References / 123
5 CHEMISTRY OF RUBBER–ORGANOCLAY NANOCOMPOSITES 127
5.1 Introduction / 127
5.2 Organic Cation Decomposition in Salts, Organoclays and Polymer Nanocomposites / 128
5.2.1 Experimental Techniques / 128
5.2.2 Decomposition of Organoclays Versus Precursor Organic Cation Salts / 133
5.3 Mechanism of Thermal Decomposition of Organoclays / 135
5.4 Role of Organic Cations in Organoclays as Rubber Vulcanization Activators / 137
References / 141
SECTION II PREPARATION AND CHARACTERIZATION OF RUBBER–CLAY NANOCOMPOSITES
6 PROCESSING METHODS FOR THE PREPARATION OF RUBBER–CLAY NANOCOMPOSITES 147
6.1 Introduction / 147
6.2 Latex Compounding Method / 148
6.2.1 Mechanism / 148
6.2.2 Influencing Factors / 149
6.3 Melt Compounding / 157
6.3.1 Mechanism / 157
6.3.2 Influencing Factors / 160
6.4 Solution Intercalation and In Situ Polymerization Intercalation / 170
6.5 Summary and Prospect / 170
Acknowledgment / 171
References / 171
7 MORPHOLOGY OF RUBBER–CLAY NANOCOMPOSITES 181
7.1 Introduction / 181
7.1.1 Focus, Objective and Structure of Chapter 7 / 181
7.1.2 X-Ray Diffraction Analysis for the Investigation of RCN / 182
7.2 Background for the Review of RCN Morphology / 182
7.2.1 Cationic Clays Used for the Preparation of Rubber Nanocomposites / 182
7.2.2 Multiscale Organization of Layered Clays / 184
7.2.3 Clay Distribution and Dispersion / 184
7.2.4 Clay Modification: Intercalation of Low Molecular Mass Substances / 184
7.2.5 Types of Polymer–Clay Composites / 184
7.2.6 Specific Literature on RCN / 186
7.3 Rubber–Clay Nanocomposites with Pristine Clays / 186
7.3.1 Rubber Nanocomposites with Cationic Clays / 187
7.3.2 In a Nutshell / 187
7.3.3 Distribution and Dispersion of a Pristine Clay in a Rubber Matrix / 190
7.3.4 Organization of Aggregated Pristine Clays / 194
7.4 Rubber–Clay Nanocomposites with Clays Modified with Primary Alkenylamines / 197
7.4.1 In a Nutshell / 197
7.4.2 Composites with Montmorillonite and Bentonite / 198
7.4.3 Composites with Fluorohectorite Modified with a Primary Alkenylamine / 202
7.5 Rubber–Clay Nanocomposites with Clays Modified with an Ammonium Cation Having three Methyls and One Long-Chain Alkenyl Substituents / 206
7.5.1 In a Nutshell / 206
7.5.2 Composites with Montmorillonite and Bentonite / 207
7.6 Rubber–Clay Nanocomposites with Montmorillonite Modified with Two Substituents Larger Than Methyl / 212
7.6.1 In a Nutshell / 212
7.6.2 Hydrogenated Tallow and Benzyl Groups as Ammonium Cation Substituents / 213
7.6.3 Hydrogenated Tallow and Ethylhexyl Groups as Ammonium Cation Substituents / 213
7.6.4 Other Long- and Short-Chain Alkenyl Groups as Ammonium Cation Substituents / 215
7.7 Rubber Composites with Montmorillonite Modified with an Ammonium Cation Containing a Polar Group / 215
7.7.1 In a Nutshell / 217
7.7.2 Composites with Diene Rubbers / 217
7.8 Rubber Nanocomposites with Montmorillonite Modified with an Ammonium Cation Containing Two Long-Chain Alkenyl Substituents / 219
7.8.1 In a Nutshell / 220
7.8.2 Composites with Two Talloyl Groups as Ammonium Cation Substituents / 220
7.9 Proposed Mechanisms for the Formation of Rubber–Clay Nanocomposites / 228
7.9.1 Two Mechanisms for the Formation of an Exfoliated Clay / 228
7.9.2 Two Mechanisms for the Formation of an Intercalated Organoclay / 228
7.9.3 Intercalation of Polymer Chains in the Interlayer Space / 229
7.9.4 Intercalation of Low Molecular Mass Substances in the Interlayer Space / 230
Abbreviations / 232
Acknowledgment / 233
References / 233
8 RHEOLOGY OF RUBBER–CLAY NANOCOMPOSITES 241
8.1 Introduction / 241
8.2 Rheological Behavior of Rubber–Clay Nanocomposites / 242
8.2.1 Natural Rubber (NR), Epoxidized Natural Rubber (ENR) and Polyisoprene Rubber (IR)–Clay Nanocomposites / 243
8.2.2 Styrene–Butadiene Rubber (SBR)–Clay Nanocomposites / 246
8.2.3 Polybutadiene Rubber (BR)–Clay Nanocomposites / 247
8.2.4 Acrylonitrile Butadiene Rubber (NBR)–Clay Nanocomposites / 250
8.2.5 Ethylene Propylene Rubber–Clay Nanocomposites / 253
8.2.6 Fluoroelastomer–Clay Nanocomposites / 254
8.2.7 Poly(isobutylene-co-para-methylstyrene) (BIMS) Rubber–Clay Nanocomposites / 257
8.2.8 Poly(ethylene-co-vinylacetate) (EVA) Rubber–Clay Nanocomposites / 257
8.2.9 Polyepichlorohydrin Rubber–Clay Nanocomposites / 259
8.2.10 Thermoplastic Polyurethane (TPU)–Clay Nanocomposites / 261
8.2.11 Styrene–Ethylene–Butylene–Styrene (SEBS) Block Copolymer–Clay Nanocomposites / 262
8.3 General Remarks on Rheology of Rubber–Clay Nanocomposites / 263
8.4 Overview of Rheological Theories of Polymer–Clay Nanocomposites / 269
8.5 Conclusion and Outlook / 270
References / 271
9 VULCANIZATION CHARACTERISTICS AND CURING KINETIC OF RUBBER–ORGANOCLAY NANOCOMPOSITES 275
9.1 Introduction / 275
9.2 Vulcanization Reaction / 276
9.3 Rubber Cross-Linking Systems / 278
9.3.1 Sulfur Vulcanization / 278
9.3.2 Peroxide Vulcanization / 282
9.4 The Role of Organoclay on Vulcanization Reaction / 283
9.4.1 Influence of Organoclay Structural Characteristics on Rubber Vulcanization / 288
9.5 Vulcanization Kinetics of Rubber–Organoclay Nanocomposites / 290
9.6 Conclusions / 297
References / 298
10 MECHANICAL AND FRACTURE MECHANICS PROPERTIES OF RUBBER COMPOSITIONS WITH REINFORCING COMPONENTS 305
10.1 Introduction / 305
10.2 Testing of Viscoelastic and Mechanical Properties of Reinforced Elastomeric Materials / 307
10.2.1 Dynamic–Mechanical Analysis / 307
10.2.2 Tensile Testing / 310
10.2.3 Assessment of Toughness Behavior under Impact-Like Loading Conditions / 313
10.2.4 Hardness Testing / 315
10.2.5 Special Methods / 316
10.3 Characterization of the Fracture Behavior of Elastomers / 319
10.3.1 Fracture Mechanics Concepts / 319
10.3.2 Experimental Methods / 321
10.4 Mechanism of Reinforcement in Rubber–Clay Composites / 328
10.5 Theories and Modeling of Reinforcement / 333
Acknowledgment / 336
References / 336
11 PERMEABILITY OF RUBBER COMPOSITIONS CONTAINING CLAY 343
11.1 Introduction / 343
11.1.1 Butyl Rubbers as Nanocomposite Base Elastomers / 343
11.1.2 Measurement of Tire Innerliner Compound Permeability / 345
11.1.3 Further Improvement in Tire Permeability / 346
11.2 Nanocomposites / 346
11.3 Preparation of Elastomer Nanocomposites / 352
11.4 Temperature and Compound Permeability / 352
11.5 Vulcanization of Nanocomposite Compounds and Permeability / 356
11.6 Thermodynamics and BIMSM Montmorillonite Nanocomposites / 358
11.7 Nanocomposites and Tire Performance / 362
11.8 Summary / 364
References / 364
SECTION III COMPOUNDS WITH RUBBER–CLAY NANOCOMPOSITES
12 RUBBER–CLAY NANOCOMPOSITES BASED ON APOLAR DIENE RUBBER 369
12.1 Introduction / 369
12.2 Preparation Methods / 371
12.2.1 Latex / 371
12.2.2 Solution / 373
12.2.3 Melt Blending / 374
12.3 Cure Characteristics / 377
12.4 Clay Dispersion / 379
12.4.1 Detection / 380
12.4.2 Characterization / 383
12.5 Properties / 387
12.5.1 Mechanical (Dynamic–Mechanical) / 387
12.5.2 Friction/Wear/Abrasion / 392
12.5.3 Barrier / 393
12.5.4 Fire Resistance / 396
12.5.5 Others / 397
12.6 Applications and Future Trends / 398
Acknowledgment / 399
References / 399
13 RUBBER–CLAY NANOCOMPOSITES BASED ON NITRILE
RUBBER 409
13.1 Introduction / 409
13.2 Preparation Methods and Clay
Dispersion / 410
13.2.1 Solution / 410
13.2.2 Latex / 411
13.2.3 Melt Blending / 412
13.3 Cure Characteristics / 414
13.4 Properties / 416
13.4.1 Mechanical (Dynamic–Mechanical) / 416
13.4.2 Friction/Wear / 421
13.4.3 Barrier / 423
13.4.4 Fire Resistance / 424
13.4.5 Others / 425
13.5 Outlook / 425
Acknowledgment / 426
References / 426
xii CONTENTS
FOR SCREEN VIEWING IN DART ONLY
14 RUBBER–CLAY NANOCOMPOSITES BASED ON BUTYL AND
HALOBUTYL RUBBERS 431
14.1 Introduction / 431
14.1.1 Butyl Rubber: Key Properties
and Applications / 431
14.1.2 Butyl Rubber–Clay Nanocomposites / 433
14.2 Types of Clays Useful in Butyl Rubber–Clay
Nanocomposites / 435
14.2.1 Montmorillonite Clays / 435
14.2.2 Hydrotalcite Clays / 435
14.2.3 High Aspect Ratio Talc Fillers / 436
14.2.4 Other Clays / 437
14.3 Compatibilizer Systems for Butyl Rubber–Clay
Nanocomposites / 438
14.3.1 Surfactants and Swelling Agents / 439
14.3.2 Butyl Rubber Ionomers / 439
14.3.3 Maleic Anhydride-Grafted Polymers / 443
14.3.4 Low Molecular Weight Polymers and Resins / 444
14.4 Methods of Preparation of Butyl Rubber–Clay Nanocomposites / 444
14.4.1 Melt Method / 445
14.4.2 Solution Method / 445
14.4.3 Latex Method / 447
14.4.4 In Situ Polymerization / 448
14.5 Properties and Applications of Butyl Rubber–Clay Nanocomposites / 449
14.5.1 Air Barrier Properties / 449
14.5.2 Reinforcement Properties / 452
14.5.3 Vulcanization Properties / 454
14.5.4 Adhesion Properties / 456
14.5.5 Other Properties / 457
14.6 Conclusions / 457
References / 458
15 RUBBER–CLAY NANOCOMPOSITES BASED ON OLEFINIC RUBBERS (EPM, EPDM) 465
15.1 Introduction / 465
15.2 Types of Clay Minerals Useful in EPM–, EPDM–Clay Nanocomposites / 466
15.3 Compatibilizer Systems for Olefinic Rubber–Clay Nanocomposites / 467
15.4 Preparation of EPDM–Clay Nanocomposites by an In Situ Intercalation Method / 469
15.5 Characteristics of EPDM–Clay Nanocomposites / 473
15.5.1 Gas Barrier Properties of EPDM–Clay Nanocomposites / 473
15.5.2 Rheological Properties of EPDM–Clay Nanocomposites / 474
15.5.3 Stability of EPDM–Clay Nanocomposites / 475
15.5.4 Swelling Properties of EPDM–Clay Nanocomposites / 475
15.5.5 Mechanical Properties of EPDM–Clay Nanocomposites / 476
15.6 Preparation and Characteristics of EPM–Clay Nanocomposites / 479
15.6.1 Tensile Properties of EPM–CNs / 480
15.6.2 Temperature Dependence of Dynamic Storage Moduli of EPM–CNs / 481
15.6.3 Creep Properties of EPM–CNs / 482
15.6.4 Swelling Properties of EPM–CNs / 483
15.7 Conclusions / 486
References / 486
16 RUBBER–CLAY NANOCOMPOSITES BASED ON THERMOPLASTIC ELASTOMERS 489
16.1 Introduction / 489
16.2 Selection of Materials / 491
16.2.1 Polymer Resin / 491
16.2.2 Nanoparticles / 493
16.3 Experimental / 493
16.3.1 Processing of Thermoplastic Elastomer Nanocomposites / 493
16.3.2 Morphological Characterization / 494
16.3.3 Thermal Properties Characterization / 495
16.3.4 Flammability Properties Characterization / 495
16.3.5 Thermophysical Properties Characterization / 496
16.4 Numerical / 497
16.4.1 Modeling of Decomposition Kinetics / 497
16.5 Discussion of Results / 501
16.5.1 Nanoparticle Dispersion / 501
16.5.2 Thermal Properties / 503
16.5.3 Flammability Properties / 507
16.5.4 Microstructures of Posttest Specimens / 511
16.5.5 Thermophysical Properties / 512
16.5.6 Kinetic Parameters / 513
16.6 Summary and Conclusions / 516
16.7 Nomenclature / 517
Acknowledgments / 518
References / 518
SECTION IV APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES
17 AUTOMOTIVE APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES 525
17.1 Introduction / 525
17.2 Automotive Application of Rubber / 526
17.2.1 Automotive Hose / 527
17.2.2 Automotive Seals / 528
17.2.3 Automotive Belts / 529
17.2.4 Automotive Tubing / 529
17.2.5 Door Seal and Window Channels / 529
17.2.6 Diaphragms and Rubber Boots / 529
17.2.7 Tire, Tube and Flap / 529
17.2.8 Other Miscellaneous Rubber Parts / 531
17.3 Prime Requirement of Different Elastomeric Auto Components from Application Point of View / 531
17.4 Elastomeric Nanocomposites and Rubber Industry / 531
17.5 Superiority of Clay/Clay Mineral in Comparison to Other Nanofillers / 534
17.6 Organo-Modified Clay/Clay Minerals / 534
17.7 Scope of Application of Elastomeric Nanocomposites in Automotive Industry / 534
17.7.1 Lighter Weight and Balanced Mechanical Property / 535
17.7.2 Barrier Property or Air Retention Property / 538
17.7.3 Aging and Ozone Resistance / 539
17.7.4 Solvent Resistance / 541
17.7.5 Better Processability / 542
17.7.6 Elastomeric Polyurethane–Organoclay Nanocomposites / 544
17.7.7 Use of Organoclay Nanocomposites in Tire / 545
17.8 Disadvantages of Use of Organoclay Elastomeric Nanocomposites in Automotive Industry / 548
17.9 Conclusion / 549
Acknowledgment / 550
References / 550
18 NONAUTOMOTIVE APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES 557
18.1 Water-Based Nanocomposites / 557
18.1.1 Barrier Properties / 557
18.1.2 Comparison with Thermally Processed Elastomers / 566
18.2 Applications / 566
18.2.1 Sports Balls and Other Pneumatic Applications / 566
18.2.2 Breakthrough Time Applications / 571
References / 573
INDEX 575