Gartner | Optimizing Hospital-wide Patient Scheduling | Buch | 978-3-319-04065-3 | sack.de

Buch, Englisch, Band 674, 119 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 2175 g

Reihe: Lecture Notes in Economics and Mathematical Systems

Gartner

Optimizing Hospital-wide Patient Scheduling

Early Classification of Diagnosis-related Groups Through Machine Learning
2014
ISBN: 978-3-319-04065-3
Verlag: Springer International Publishing

Early Classification of Diagnosis-related Groups Through Machine Learning

Buch, Englisch, Band 674, 119 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 2175 g

Reihe: Lecture Notes in Economics and Mathematical Systems

ISBN: 978-3-319-04065-3
Verlag: Springer International Publishing


Diagnosis-related groups (DRGs) are used in hospitals for the reimbursement of inpatient services. The assignment of a patient to a DRG can be distinguished into billing- and operations-driven DRG classification. The topic of this monograph is operations-driven DRG classification, in which DRGs of inpatients are employed to improve contribution margin-based patient scheduling decisions. In the first part, attribute selection and classification techniques are evaluated in order to increase early DRG classification accuracy. Employing mathematical programming, the hospital-wide flow of elective patients is modelled taking into account DRGs, clinical pathways and scarce hospital resources. The results of the early DRG classification part reveal that a small set of attributes is sufficient in order to substantially improve DRG classification accuracy as compared to the current approach of many hospitals. Moreover, the results of the patient scheduling part reveal that the contribution margin can be increased as compared to current practice.
Gartner Optimizing Hospital-wide Patient Scheduling jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Machine learning for early DRG classification.- Scheduling the hospital-wide flow of elective patients.- Experimental analyses.- Conclusion.


Daniel Gartner earned his doctoral degree in Operations Management at the TUM School of Management, Technische Universität München, Germany. His research examines optimization problems in health care and machine learning techniques to improve hospital-wide scheduling decisions. Prior to joining TUM he received his university diploma (Master's equivalent) in medical informatics from the University of Heidelberg, Germany, and a M.Sc. in Networks and Information Systems from the Université Claude Bernard Lyon, France.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.