Buch, Englisch, Band 1728, 162 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 280 g
Reihe: Lecture Notes in Mathematics
Buch, Englisch, Band 1728, 162 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 280 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-67161-9
Verlag: Springer Berlin Heidelberg
The next chapter describes algorithms in invariant theory including many examples and time tables. These techniques are applied in the chapters on symmetric bifurcation theory and equivariant dynamics.
This combination of different areas of mathematics will be interesting to researchers in computational algebra and/or dynamics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Gröbner bases: Buchberger's algorithm.- The consequence of grading.- Definitions and the relation to Gröbner bases.- Computation of a Hilbert series.- The Hilbert series driven Buchberger algorithm.- The computation with algebraic extensions.- Detection of Gröbner bases.- Dynamic Buchberger algorithm.- Elimination.- Algorithms of the computation of invariants and equivariants: Using the Hilbert series.- Invariants.- Equivariants.- Using the nullcone.- Using a homogeneous system of parameters.- Computing uniqueness.- Symmetric bifurcation theory.- Local bifurcation analysis.- An example of secondary Hopf bifurcation.- Orbit space reduction.- Exact computation of steady states.- Differential equations on the orbit space.- Using Noether normalization.- Further reading.- References.- Index.