Gazzola / Sweers / Grunau | Polyharmonic Boundary Value Problems | Buch | 978-3-642-12244-6 | sack.de

Buch, Englisch, Band 1991, 423 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 756 g

Reihe: Lecture Notes in Mathematics

Gazzola / Sweers / Grunau

Polyharmonic Boundary Value Problems

Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains
1. Auflage. 2010
ISBN: 978-3-642-12244-6
Verlag: Springer

Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains

Buch, Englisch, Band 1991, 423 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 756 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-642-12244-6
Verlag: Springer


Linear elliptic equations arise in several models describing various phenomena in the applied sciences, the most famous being the second order stationary heat eq- tion or,equivalently,the membraneequation. Forthis intensivelywell-studiedlinear problem there are two main lines of results. The ?rst line consists of existence and regularity results. Usually the solution exists and “gains two orders of differen- ation” with respect to the source term. The second line contains comparison type results, namely the property that a positive source term implies that the solution is positive under suitable side constraints such as homogeneous Dirichlet bou- ary conditions. This property is often also called positivity preserving or, simply, maximum principle. These kinds of results hold for general second order elliptic problems, see the books by Gilbarg-Trudinger [198] and Protter-Weinberger [347]. For linear higher order elliptic problems the existence and regularitytype results - main, as one may say, in their full generality whereas comparison type results may fail. Here and in the sequel “higher order” means order at least four. Most interesting models, however, are nonlinear. By now, the theory of second order elliptic problems is quite well developed for semilinear, quasilinear and even for some fully nonlinear problems. If one looks closely at the tools being used in the proofs, then one ?nds that many results bene?t in some way from the positivity preserving property. Techniques based on Harnack’s inequality, De Giorgi-Nash- Moser’s iteration, viscosity solutions etc.

Gazzola / Sweers / Grunau Polyharmonic Boundary Value Problems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Models of Higher Order.- Linear Problems.- Eigenvalue Problems.- Kernel Estimates.- Positivity and Lower Order Perturbations.- Dominance of Positivity in Linear Equations.- Semilinear Problems.- Willmore Surfaces of Revolution.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.