E-Book, Englisch, Band 2017, 328 Seiten
Reihe: Reviews in Plasmonics
Geddes Reviews in Plasmonics 2017
1. Auflage 2019
ISBN: 978-3-030-18834-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 2017, 328 Seiten
Reihe: Reviews in Plasmonics
ISBN: 978-3-030-18834-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3;Plasmonic-Additive Enabled Polymer Nanocomposites;9
3.1;1 Introduction;9
3.2;2 Surface Chemistry for Polymer Composite Integration;14
3.2.1;2.1 Polymer Grafting;15
3.2.2;2.2 Polyelectrolyte Coatings;15
3.2.3;2.3 Silica Capping;17
3.3;3 Plasmonic Polymer Nanocomposites;17
3.4;4 Conclusions;21
3.5;References;21
4;Graphene Plasmonics Based Terahertz Integrated Circuits;25
4.1;1 Introduction;25
4.2;2 Material Properties of Graphene;26
4.3;3 Graphene Based Plasmonic Waveguide Structures;28
4.4;4 Electromagnetic Modelling of Variants of GPPW;31
4.4.1;4.1 Graphene Plasmonic Nanostrip Waveguide (GPNSW);31
4.4.2;4.2 Graphene Plasmonic Suspended Nanostrip Waveguide (GPSNSW);38
4.4.3;4.3 Graphene Plasmonic Coplanar Waveguide (GPCPW);41
4.4.4;4.4 Graphene Backed Graphene Plasmonic Coplanar Waveguide (GB-GPCPW);46
4.5;5 Examples of Graphene Plasmonic Waveguide Based THz Integrated Circuits;47
4.5.1;5.1 Gap Coupled Half Wave Resonator in GPCPW;47
4.5.2;5.2 Parallel Coupled Resonator Band-Pass Filter Using GPNSW;50
4.5.3;5.3 T-Junction Power Splitter Using GPNSW;52
4.5.4;5.4 Graphene Based Terahertz Tunable Plasmonic Directional Coupler;53
4.5.5;5.5 Graphene Based Phase Shifters;56
4.5.6;5.6 Graphene Terahertz Plasmon Oscillators;57
4.5.7;5.7 Graphene Based Nano-Patch Antenna;58
4.6;6 Conclusions;59
4.7;References;59
5;A Lithography-Free and Chemical-Free Route to Wafer-Scale Gold Nanoisland Arrays for SERS;62
5.1;1 Introduction;63
5.2;2 Wafer-Scale Gold Nanoisland Arrays;64
5.3;3 Experiment Description;66
5.4;4 Fabrication of Gold Nanoisland Arrays with Cyclic Deposition and Anneal;66
5.5;5 Gold Nanoisland Arrays for SERS;74
5.6;6 Summary;79
5.7;References;79
6;Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application;84
6.1;1 Introduction;85
6.2;2 FDTD Method;87
6.2.1;2.1 Simulation Methodology;88
6.3;3 Optical Properties of Noble Metallic Nanostructure;90
6.3.1;3.1 Size Dependent;90
6.3.2;3.2 Effect of Dielectric Medium;90
6.3.3;3.3 Structural Parameters;94
6.4;4 Field Enhancement;102
6.4.1;4.1 Metallic Nanosphere;103
6.4.2;4.2 Multilayer;105
6.4.3;4.3 Dimer Nanostructure;107
6.4.4;4.4 Multimer;108
6.5;5 Conclusion;111
6.6;References;112
7;Emerging Plasmon-Optical and -Electrical Effects in Organic Solar Cells: A Combined Theoretical and Experimental Study;116
7.1;1 Introduction;117
7.1.1;1.1 Working Principles of Organic Solar Cells;117
7.1.2;1.2 Theoretical Governing Equations of Organic Solar Cells;119
7.1.3;1.3 Surface Plasmon Polaritons;123
7.2;2 Plasmon-Enhanced OSCs;124
7.2.1;2.1 Plasmon-Optical Effects: LSPRs by Metal NPs;125
7.2.2;2.2 Plasmon-Optical Effects: PSPRs by Nano-Patterned Electrode;126
7.2.3;2.3 Plasmon-Optical Effects: Multiple Resonances;126
7.2.4;2.4 Plasmon-Electrical Effect;127
7.3;3 Design Rules for Multiple Resonances;127
7.3.1;3.1 Optimizations of the Patterned Electrode;129
7.3.2;3.2 Strategic Incorporation of Metal Nanoparticles;130
7.3.3;3.3 Experimental Realization of Cooperative Plasmonic Resonances;133
7.4;4 Simultaneously Plasmon-Optical and -Electrical Effects in Single OSC Device;135
7.4.1;4.1 Plasmon-Optical Effects: Excitations of Plasmonic Asymmetric Modes;137
7.4.2;4.2 Plasmon-Optical Effects: Energy Transfer;139
7.4.3;4.3 Plasmon-Electrical Effects: Redistributions of Exciton Generation Region;140
7.4.4;4.4 Experimental Realization of Plasmon-Optical and Electrical Effects;141
7.5;5 Conclusion;143
7.6;References;144
8;Tunable Plasmonic Properties of Nanoshells;148
8.1;1 Introduction;148
8.2;2 The Dielectric Function of the Metals;152
8.3;3 Optical Properties of the Core Shell Nanoparticles;156
8.4;4 Sensing Applications of the Bimetallic Core Shell Based on LSPR and SERS;166
8.5;References;172
9;Topological Hyperbolic and Dirac Plasmons;176
9.1;1 Introduction;176
9.1.1;1.1 Helmholtz Theory for Hyperbolic Materials with ME Effect;180
9.2;2 Optical Modes at a Single Interface;181
9.3;3 Optical Modes in a Slab Waveguide;185
9.4;4 Summary and Outlook;195
9.5;References;195
10;Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications;198
10.1;1 Introduction;199
10.2;2 Physical and Chemical Properties of Epoxy Resins;201
10.3;3 Light-Nanoparticle Interaction in Dielectrics;203
10.4;4 Synthesis and Optical Properties;204
10.4.1;4.1 Thermal Vacuum Evaporation;204
10.4.2;4.2 Ion Implantation;206
10.4.3;4.3 Solvothermal Method;208
10.4.4;4.4 Photochemical Method;210
10.4.5;4.5 Ex Situ Multi-step Chemical Reduction;212
10.4.6;4.6 In Situ Chemical Method;218
10.5;5 Applications;222
10.5.1;5.1 Optical Sensing;222
10.5.2;5.2 Imaging;225
10.5.3;5.3 Surface Enhanced Raman Spectroscopy;227
10.5.4;5.4 Self-Healing and Shape-Memory Resins;228
10.5.5;5.5 Optical Attenuators;231
10.6;6 Conclusions;232
10.7;References;233
11;Surface Enhanced Raman Spectroscopy-Based Bio-molecular Detectors;236
11.1;1 Introduction;236
11.2;2 Methods and Mechanism;237
11.2.1;2.1 Electromagnetic Enhancement;238
11.2.2;2.2 Chemical Enhancement;239
11.2.3;2.3 Plasmonic Materials;240
11.3;3 Experimental Consideration and SERS Substrates;241
11.3.1;3.1 SERS Substrate Using Roughen Metal Surface;242
11.3.2;3.2 SERS Measurements Using Colloidal Metal NPs;242
11.3.3;3.3 SERS Measurements Using Core-Shell NPs;243
11.3.4;3.4 SERS Measurements Using Ag or Au NPs Assembled on Flat Substrates;247
11.3.5;3.5 SERS Measurements Using One-Dimensional SERS Substrates;251
11.3.6;3.6 Tip-Enhanced Raman Scattering (TERS);254
11.3.7;3.7 SERS Tags;255
11.4;4 Summary and Conclusions;255
11.5;References;256
12;Review of Advances in Metal-Enhanced Fluorescence;259
12.1;1 Principles of Metal-Enhanced Fluorescence (MEF);259
12.1.1;1.1 Enhanced Absorption from Metal Nanoparticles Is Characteristic of MEF Systems;260
12.1.2;1.2 Enhanced Intensities from Surface Plasmon-Coupled Emission (SPCE) Is Characteristic of MEF Systems;267
12.1.3;1.3 Principles of Enhanced Absorption and Emission Intersect to Form a Unified Description of MEF;271
12.2;2 Applications of Metal-Enhanced Fluorescence;272
12.2.1;2.1 MEF from Silver-Coated Luminescent Nanostructures Diversifies Potential Applications;273
12.2.2;2.2 Metal-Enhanced Systems on Plastic Substrates Yield Sensitive Assays for Biomedical Applications;276
12.2.3;2.3 Metal-Enhanced Systems Can Be Engineered for the Generation of Reactive Oxygen Species;280
12.3;3 Conclusion;285
12.4;References;286
13;Plasmonic Coupling Effects in Arrays of Noble Metal Nanoparticles;290
13.1;1 Introduction;290
13.2;2 Coupling Effects;292
13.3;3 Experiment and Simulations;299
13.4;4 Off-Resonance Absorption Peaks in Uniform 1D Arrays;303
13.5;5 Computational Simulations;308
13.6;6 Coupling in Dense 2D Monolayers of Metal Nanoparticles;310
13.7;7 Sample Morphology and Optical Characterization;311
13.8;8 Laser Driven Hybridization of Collective SPR Modes in 2D Monolayer of Silver Nanoparticles: Experiment;313
13.9;9 Comparison with Experiment;318
13.10;10 Conclusions;320
13.11;References;321
14;Index;326




