E-Book, Englisch, Band Volume 65, 216 Seiten
Reihe: Advances in Genetics
Genetic Dissection of Neural Circuits and Behavior
1. Auflage 2009
ISBN: 978-0-08-095115-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band Volume 65, 216 Seiten
Reihe: Advances in Genetics
ISBN: 978-0-08-095115-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Genes interact with the environment, experience, and biology of the brain to shape an animal's behavior. This latest volume in Advances in Genetics, organized according to the most widely used model organisms, describes the latest genetic discoveries in relation to neural circuit development and activity.
* Explores the latest topics in neural circuits and behavior research in zebrafish, drosophila, C.elegans, and mouse models
* Includes methods for testing with ethical, legal, and social implications
* Critically analyzes future prospects
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Genetic Dissection of Neural Circuits and Behavior;4
3;Copyright Page;5
4;Contents;7
5;Contributors;9
6;Chapter 1: Genetic Dissection of Neural Circuits and Behavior in Mus musculus;11
6.1;Abstract;12
6.2;I. Conventional Gene Targeting Strategies;12
6.3;II. Spatially Restricted Gene Manipulation;15
6.3.1;A. The Cre/loxP system;16
6.3.2;B. Investigating NMDA receptor function in specific subregions of the brain using the Cre/loxP system;16
6.4;III. The Use of Dominant Negative Inhibitors to Manipulate Gene Function;20
6.5;IV. Conditional Manipulation of Gene Function;21
6.5.1;A. The tTA system;21
6.5.2;B. A novel form of the tTA system: The rtTA system;25
6.6;V. Pharmacogenetic Approaches;26
6.6.1;A. Tamoxifen-controlled gene manipulation;26
6.6.2;B. Pharmacogenetic regulation of neuronal excitability;28
6.6.3;C. Targeting of intracellular signaling pathways using pharmacogenetic approaches;29
6.7;VI. Optogenetic Approaches;32
6.8;VII. Visualization of Brain Structure and Function;34
6.8.1;A. The TetTag system;35
6.8.2;B. The Brainbow mouse;37
6.9;VIII. The Challenges Facing Genetic Approaches in the Mouse;38
6.9.1;Acknowledgments;41
6.9.2;References;42
7;Chapter 2: Worm Watching: Imaging Nervous System Structure and Function in Caenorhabditis elegans;49
7.1;I. Introduction;50
7.2;II. Real-Time Indicators of Neuronal Activity;53
7.2.1;A. Properties of worm neurons;53
7.2.2;B. Speed of electrical signaling;54
7.3;III. Monitoring Intracellular Calcium;55
7.3.1;A. GECIs: Cameleon and G-C55
7.3.2;B. Examples of GECIs in worm neurobiology;56
7.3.3;C. Limitations of GECIs;57
7.4;IV. Imaging Presynaptic Terminals;59
7.4.1;A. Quantifying presynaptic proteins;59
7.4.2;B. pH-Sensitive GFP at the synapse;61
7.4.3;C. Spatial localization as a signal;63
7.4.4;D. Systematic profiling of presynaptic proteins;63
7.5;V. Imaging Postsynaptic Compartments;64
7.5.1;A. Postsynaptic glutamate receptors;64
7.5.2;B. Postsynaptic nicotinic acetylcholine receptors;67
7.5.3;C. Other receptors;68
7.6;VI. Imaging Proxies for Neuropeptide Secretion;68
7.7;VII. Bimolecular Fluorescence Complementation in the Worm;70
7.7.1;A. Combinatorial promoters;70
7.7.2;B. GRASP;71
7.8;VIII. Methods for Immobilizing the Worm;71
7.8.1;A. Pharmacological paralysis;73
7.8.2;B. Glue;73
7.8.3;C. Microfluidics;74
7.8.4;D. Imaging on the go;74
7.9;IX. Femtosecond Lasers and Nanosurgery on the Worm;75
7.9.1;A. Beyond cell ablation;76
7.9.2;B. Axonal outgrowth and repair;76
7.10;X. Designing the Ideal Optical Probe;77
7.11;XI. Conclusions and Prospects;80
7.11.1;. Acknowledgments;80
7.11.2;. References;80
7.12;References;80
8;Chapter 3: Mapping and Manipulating Neural Circuits in the Fly Brain;89
8.1;. Abstract;90
8.2;I. Introduction;90
8.2.1;A. Genes for behavior;91
8.2.2;B. Neurons for behavior;93
8.2.3;C. Anatomy and stereotypy;94
8.3;II. Spatial Targeting of Neuron Types;96
8.4;III. Imaging Neurons;102
8.5;IV. Functional Imaging: Watching Neuronal Activity;105
8.5.1;A. Voltage sensors;106
8.5.2;B. Genetically encoded calcium indicators;107
8.6;V. Control of Neural Activity;110
8.6.1;A. Cell killers;113
8.6.2;B. Synaptic vesicle blockers;117
8.6.3;C. Electrical blockers;119
8.6.4;D. Neuronal activators;120
8.6.5;E. Light-based methods;121
8.6.6;F. Caveats;122
8.7;VI. Quantitative Behavioral Assays;123
8.8;VII. Conclusions;128
8.8.1;A. Example circuits;128
8.8.2;B. New tools;129
8.8.3;C. Full circle;130
8.8.4;. Acknowledgments;130
8.8.5;. References;131
8.9;References;131
9;Chapter 4: A Network of G-Protein Signaling Pathways Control Neuronal Activity in C. elegans;155
9.1;. Abstract;155
9.2;I. Introduction;156
9.2.1;A. Invertebrate neuroscience;156
9.2.2;B. C. elegans motorneurons;157
9.2.3;C. The C. elegans NMJ as a model synapse;158
9.2.4;D. Combining genetics with pharmacology;160
9.3;II. Mapping Intracellular Neural Networks Within C. Elegans Motorneurons;161
9.3.1;A. The EGL-30(Gaq) pathway;161
9.3.2;B. The GPA-12(Ga12) pathway;166
9.3.3;C. The GOA-1(Gao) pathway;167
9.3.4;D. The DAG effector pathways;169
9.3.5;E. The GSA-1(Gas) pathway;172
9.3.6;F. Other heterotrimeric G-protein subunits and regulators;177
9.3.7;G. G-protein-coupled receptors;178
9.3.8;H. Other genes that alter motorneuron activity;181
9.3.9;I. New screens-An embarrassment of riches;187
9.3.10;J. The C. elegans NMJ-A model for human synapses?;187
9.3.11;. References;188
9.4;References;188
10;Index;203
11;Color Plates;211