Buch, Englisch, 245 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 576 g
ISBN: 978-981-13-5849-4
Verlag: Springer Nature Singapore
Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning.
The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
Weitere Infos & Material
Introduction to Machine Learning.- Introduction to Neural Networks .- Deep Neural Networks – I .- Initialization of Network Parameters.- Optimization.- Deep Neural Networks - II.- Convolutional Neural Networks (ConvNets).- Recurrent Neural Networks (RNN) or Sequence Models.- Epilogue.