Buch, Englisch, 390 Seiten, Book, Format (B × H): 156 mm x 234 mm, Gewicht: 427 g
Buch, Englisch, 390 Seiten, Book, Format (B × H): 156 mm x 234 mm, Gewicht: 427 g
ISBN: 978-981-13-7089-2
Verlag: SPRINGER NATURE
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
Weitere Infos & Material
Preface1 Introduction to R 2 Linear Algebra2.1 Linear Algebra with R2.1.1 Introduction2.1.2 Matrix Notation3 Introduction to Machine Learning and Deep Learning 3.1 Training, Validation and Test Data3.2 Bias and Variance3.3 Underfitting and Overfitting3.3.1 Bayes Error 3.4 Maximum Likelihood Estimation 3.5 Quantifying Loss3.5.1 The Cross-Entropy Loss3.5.2 Negative Log-Likelihood3.5.3 Entropy3.5.4 Cross-Entropy3.5.5 Kullback-Leibler Divergence 3.5.6 Summarizing the Measurement of Loss4 Introduction to Neural Networks4.1 Types of Neural Network Architectures4.1.1 Feedforward Neural Networks (FFNNs) 4.1.2 Convolutional Neural Networks (Convnets)4.1.3 Recurrent Neural Networks (RNNs)4.2 Forward Propagation4.2.1 Notations4.2.2 Input Matrix 4.2.3 Bias matrix 4.2.4 Weight matrix for Layer-14.2.5 Activation function at Layer-14.2.6 Weights matrix of Layer-24.2.7 Activation function at Layer-2 4.3 Activation Functions4.3.1 Sigmoid4.3.2 Hyperbolic tangent (tanh)4.3.3 Rectified Linear Unit (ReLU)4.3.4 leakyReLU4.3.5 Softmax 4.4 Derivatives of Activation Functions4.4.1 Derivative of the Sigmoid4.4.2 Derivative of the tanh4.4.3 Derivative of the ReLU CONTENTS4.4.4 Derivative of the lReLU4.4.5 Derivative of the Softmax4.5 Loss Functions4.6 Derivative of the Cost Function4.6.1 Derivative of Cross Entropy Loss with Sigmoid 4.6.2 Derivative of Cross Entropy Loss with Softmax 4.7 Back Propagation 4.7.1 Backpropagate to the output layer4.7.2 Backpropagate to the second hidden layer4.7.3 Backpropagate to the _rst hidden layer 4.7.4 Vectorization of backprop equations 4.8 Writing a Simple Neural Network Application 4.8.1 Image Classi_cation using Sigmoid Activation Neural Network 4.8.2 Importance of Normalization 5 Deep Neural Networks 5.1 Writing a Deep Neural Network (DNN) algorithm5.2 Implementing a DNN using Keras 6 Regularization and Hyperparameter Tuning 6.1 Initialization 6.1.1 Zero initialization6.1.2 Random initialization6.1.3 Xavier initialization6.1.4 He initialization6.2 Gradient Descent 6.2.1 Gradient Descent or Batch Gradient Descent 6.2.2 Stochastic Gradient Descent6.2.3 Mini Batch Gradient Descent 6.3 Dealing with NaNs 6.3.1 Hyperparameters and Weight Initialization6.3.2 Normalization 6.3.3 Using di_erent Activation functions 6.3.4 Use of NanGuardMode, DebugMode, or MonitorMode 6.3.5 Numerical Stability 6.3.6 Algorithm Related 6.3.7 NaN Introduced by AllocEmpty 6.4 Optimization Algorithms 6.4.1 Simple Update 6.4.2 Momentum based Optimization Update 6.4.3 Nesterov Momentum Optimization Update 6.4.4 Adagrad (Adaptive Gradient Algorithm) Optimization Update 6.4.5 RMSProp (Root Mean Square Propagation) with Momentum Optimization Update 6.4.6 Adam Optimization (Adaptive Moment Estimation) with Momentum Update 6.4.7 Vanishing Gradient and Numerical stability 6.5 Gradient Checking 6.6 Second order methods 6.7 Per-parameter adaptive learning rate methods6.8 Annealing the learning rate6.9 Regularization 6.9.1 Dropout Regularization6.9.2 `2 Regularization6.9.3 Combining dropout and `2 regularization?6.10 Hyperparameter optimization6.11 Evaluation 6.12 Using Keras CONTENTS6.12.1 Adjust epochs6.12.2 Add batch normalization6.12.3 Add dropout 6.12.4 Add weight regularization 6.12.5 Adjust learning rate 6.12.6 Prediction 7 Convolutional Neural Networks8 Sequence Models Bibliography




