Buch, Englisch, 502 Seiten, Format (B × H): 158 mm x 241 mm, Gewicht: 860 g
Electronic Structure and Reactivity
Buch, Englisch, 502 Seiten, Format (B × H): 158 mm x 241 mm, Gewicht: 860 g
Reihe: Atoms, Molecules, and Clusters
ISBN: 978-1-4665-0528-5
Verlag: Taylor & Francis Inc
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, the first book in a two-volume set, focuses on the structure and reactivity of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict electronic structure and chemical reactivity.
This book covers a wide range of subjects, including discussions on the following topics:
- DFT, particularly the functional and conceptual aspects
- Excited states, molecular electrostatic potentials, and intermolecular interactions
- General theoretical aspects and application to molecules
- Clusters and solids, electronic stress, and electron affinity difference
- The information theory and the virial theorem
- New periodic tables
- The role of the ionization potential
Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts’ perspectives. This comprehensive book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Kinetic Energy Functionals of Electron Density and Pair Density. Quantum Adiabatic Switching and Supersymmetric Approach to Excited States of Nonlinear Oscillators. Isomorphic Local Hardness and Possible Local Version of Hard–Soft Acids–Bases Principle. Quantum Chemistry of Highly Symmetrical Molecules and Free-Space Clusters, Plus Almost Spherical Cages of C and B Atoms. Energy Functionals for Excited States. Benchmark Studies of Spectroscopic Parameters for Hydrogen Halide Series via Scalar Relativistic State-Specific Multireference Perturbation Theory. Local Virial Theorem for Ensembles of Excited States. Information-Theoretic Probes of Chemical Bonds. Molecular Electrostatic Potentials: Some Observations. Extending the Domain of Application of Constrained Density Functional Theory to Large. Molecular Systems. Spin and Orbital Physics of Alkali Superoxides: p-Band Orbital Ordering. Electronic Stress with Spin Vorticity. Single Determinantal Approximations: Hartree–Fock, Optimized Effective Potential Theory, Density Functional Theory. Analysis of Generalized Gradient Approximation for Exchange Energy. Intermolecular Interactions through Energy Decomposition: A Chemist’s Perspective. Perfectly Periodic Table of Elements in Nonrelativistic Limit of Large Atomic Number. Quantum Similarity. Electronic Excitation Energies of Molecular Systems from the Bethe–Salpeter Equation: Example of the H2 Molecule. Semiquantitative Aspects of Density-Based Descriptors and Molecular Interactions: A More Generalized Local Hard–Soft Acid–Base Principle. First-Principles Design of Complex Chemical Hydrides as Hydrogen Storage Materials. The Parameter I – A in Electronic Structure Theory. Uncertainty and Entropy Properties for Coulomb and Simple Harmonic Potentials Modified by ar2/1+br2.