Buch, Englisch, 748 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g
Reihe: Cornerstones
Buch, Englisch, 748 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1320 g
Reihe: Cornerstones
ISBN: 978-3-031-46617-5
Verlag: Springer International Publishing
This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The “Problems and Complements” sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students.
Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference.Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Preliminaries.- Quasi-Linear Equations and the Cauchy-Kowalewski Theorem.- The Laplace Equation.- Boundary Value Problems by Double-Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Linear Elliptic Equations with Measurable Coefficients.- Elliptic De Giorgi Classes.- Navier-Stokes Equations.- Quasi-Linear Hyperbolic First Order Systems.- Non-Linear Equations of the First Order.