Buch, Englisch, 525 Seiten, Format (B × H): 170 mm x 242 mm, Gewicht: 1028 g
Singularities in Symplectic and Contact Geometry 1980-1985
Buch, Englisch, 525 Seiten, Format (B × H): 170 mm x 242 mm, Gewicht: 1028 g
Reihe: Vladimir I. Arnold - Collected Works
ISBN: 978-3-662-56188-1
Verlag: Springer
There are many articles specifically translated for this volume. They include problems for the Moscow State University alumni conference, papers on magnetic analogues of Newton’s and Ivory’s theorems, on attraction of dust-like particles, on singularities in variational calculus, on Poisson structures, and others. The volume also contains translations of Arnold’s comments to Selected works of H. Weyl and those of A.N. Kolmogorov.
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Geometrie Analytische Geometrie
- Mathematik | Informatik Mathematik Topologie Analytische Topologie
- Naturwissenschaften Astronomie Astronomie: Allgemeines
Weitere Infos & Material
1 Statistics of integral convex polygons.- 2 On some problems in singularity theory.- 3 On some nonlinear problems.- 4 The problems proposed at the Second International Conference of alumni of Moscow State University (Faculty of Mechanics and Mathematics) on the topic “Differential Equations and Their Applications”.- 5 Lagrange and Legendre cobordisms. I.- 6 Lagrange and Legendre cobordisms. II.- 7 Sweeping a caustic by a caspidal edge of a moving front.- 8 Singularities of Legendre varieties, of evolvents and of fronts at an obstacle.- 9 Elements of the large-scale structure of the universe (with Ya.B. Zeldovich and S.F. Shandarin).- 10 The large-scale structure of the Universe. I. General properties. One- and two-dimensional models (with S.F. Shandarin and Ya.B. Zeldovich).- 11 Evolution of singularities of potential flows in collision-free media and the metamorphosis of caustics in three-dimensional space.- 12 On the Newtonian potential of hyperbolic layers.- 13 On the Newtonian attraction of clusters of dust-like particles.- 14 Some algebro-geometrical aspects of the Newton attraction theory.- 15 Magnetic analogues of Newton’s and Ivory’s theorems.- 16 Some remarks on elliptic coordinates.- 17 Lagrangian manifolds with singularities, asymptotic rays, and the open swallowtail.- 18 Asymptotic rays in symplectic geometry (in Russian).- 19 Singularities of systems of rays.- 20 Singularities of ray systems.- 21 Singularities in variational calculus.- 22 Singularities in variational calculus.- 23 Singularities, bifurcations, and catastrophes.- 24 Singularities of functions, wave fronts, caustics and multidimensional integrals (with A.N. Varchenko, A.B. Givental, and A.G. Khovanskii).- 25 Remarks on the perturbation theory for problems of Mathieu type.- 26 Vanishing inflections.- 27 Appendix A to the paper: B.A. Malomed and M.I. Tribelsky “Bifurcations in distributed kinetic systems with aperiodic instability”.- 28 Reversible systems.- 29 Oscillations and bifurcations in reversible systems (with M.B. Sevryuk).- 30 The period map and Poisson structures.- 31 Frontier problems.- 32 Preface to the book “Selected Works by Hermann Weyl” (with A.N. Parshin).- 33 Comments to the paper “Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers” by Hermann Weyl (with A.N. Parshin).- 34 Comments to the paper “On the volume of tubes” by Hermann Weyl.- 35 Classical mechanics.- 36 Superpositions.