Buch, Englisch, 476 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 739 g
Buch, Englisch, 476 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 739 g
Reihe: Stochastic Modelling and Applied Probability
ISBN: 978-1-4419-2146-8
Verlag: Springer
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
General Methods and Algorithms.- Generating Random Objects.- Output Analysis.- Steady-State Simulation.- Variance-Reduction Methods.- Rare-Event Simulation.- Derivative Estimation.- Stochastic Optimization.- Algorithms for Special Models.- Numerical Integration.- Stochastic Di3erential Equations.- Gaussian Processes.- Lèvy Processes.- Markov Chain Monte Carlo Methods.- Selected Topics and Extended Examples.- What This Book Is About.- What This Book Is About.