Goertzel / Geisweiller / Pennachin | Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal,  Contextual and Causal Inference | Buch | 978-94-6239-053-9 | sack.de

Buch, Englisch, Band 2, 269 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Atlantis Thinking Machines

Goertzel / Geisweiller / Pennachin

Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference


2011
ISBN: 978-94-6239-053-9
Verlag: Atlantis Press

Buch, Englisch, Band 2, 269 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Atlantis Thinking Machines

ISBN: 978-94-6239-053-9
Verlag: Atlantis Press


The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.
Goertzel / Geisweiller / Pennachin Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Introduction.- Knowledge Representation Using Formal Logic.- Quantifying and Managing Uncertainty.- Representing Temporal Knowledge.- Temporal Reasoning.- Representing and Reasoning On Spatial Knowledge.- Representing and Reasoning on Contextual Knowledge.- Causal Reasoning.- Extracting Logical Knowledge from Raw Data.- Scalable Spatiotemporal Logical Knowledge Storage.- Mining Patterns from Large Spatiotemporal Logical Knowledge Stores.- Probabilistic Logic Networks.- Temporal and Contextual Reasoning in PLN.- Inferring the Causes of Observed Changes.-Adaptive Inference Control.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.