González-Vargas / Ibáñez / Contreras-Vidal Wearable Robotics: Challenges and Trends
1. Auflage 2017
ISBN: 978-3-319-46532-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 2nd International Symposium on Wearable Robotics, WeRob2016, October 18-21, 2016, Segovia, Spain
E-Book, Englisch, Band 16, 393 Seiten, eBook
Reihe: Biosystems & Biorobotics
ISBN: 978-3-319-46532-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Clinical Focus on Rehabilitation and Assistive WRs;14
3;1 Clinical Evaluation of a Socket-Ready Naturally Controlled Multichannel Upper Limb Prosthetic System;15
3.1;Abstract;15
3.2;1 Introduction;16
3.3;2 Methods;16
3.3.1;2.1 Subjects;16
3.3.2;2.2 Hardware and Control Algorithm;16
3.3.3;2.3 Clinical Testing;17
3.3.4;2.4 Experiment Protocol;17
3.4;3 Results;18
3.5;4 Conclusions and Discussion;18
3.6;Acknowledgments;19
3.7;References;19
4;2 Evaluation of a Robotic Exoskeleton for Gait Training in Acute Stroke: A Case Study;20
4.1;Abstract;20
4.2;1 Introduction;21
4.3;2 Materials and Methods;21
4.3.1;2.1 Participants;21
4.3.2;2.2 Robotic Exoskeleton (RE) Device;22
4.3.3;2.3 Experimental Procedure and Data Analysis;22
4.4;3 Results;23
4.5;4 Discussion;24
4.6;References;24
5;3 Wearable Exoskeleton Assisted Rehabilitation in Multiple Sclerosis: Feasibility and Experience;25
5.1;Abstract;25
5.2;1 Introduction;26
5.3;2 Materials and Methods;26
5.3.1;2.1 Subjects;26
5.3.2;2.2 Exoskeleton Assisted Training;26
5.3.3;2.3 Outcome Measures;27
5.3.4;2.4 Data Analysis;28
5.4;3 Results;28
5.5;4 Discussion;29
5.6;5 Conclusion;29
5.7;Acknowledgment;29
5.8;References;29
6;4 Exoskeletons for Rehabilitation and Personal Mobility: Creating Clinical Evidence;30
6.1;Abstract;30
6.2;1 Introduction;30
6.3;2 Material and Methods;31
6.3.1;2.1 Patient Populations;31
6.3.2;2.2 Exoskeletons;31
6.3.3;2.3 Clinical Studies;32
6.4;3 Results;32
6.5;4 Discussion;32
6.6;5 Conclusion;33
6.7;References;33
7;5 Lower Limb Wearable Systems for Mobility and Rehabilitation Challenges: Clinical Focus;34
7.1;Abstract;34
7.2;1 Introduction;34
7.3;2 Gait Rehabilitation;35
7.4;3 Gait Substitution;36
7.5;4 Clinical Aspects for Gait Rehabilitation;36
7.6;5 Conclusions;37
7.7;Acknowledgment;37
7.8;References;37
8;Emerging Technologies in WRs;39
9;Impedance Control of Series Elastic Actuators Using Acceleration Feedback;40
9.1;1 Introduction;40
9.2;2 Impedance Control of Series Elastic Actuators;42
9.3;3 Impedance Control Using Acceleration Feedback;42
9.4;4 Conclusions;43
9.5;References;43
10;7 Kinetic Energy Recovery in Human Joints: The Flywheel-Infinitely Variable Transmission Actuator;45
10.1;Abstract;45
10.2;1 Introduction;45
10.3;2 The F-IVT Actuator: Working Principle and Performance Calculation;46
10.3.1;2.1 Working Principle of F-IVT;46
10.3.2;2.2 Performance Calculation;47
10.4;3 Results and Discussion;48
10.5;4 Conclusion;49
10.6;References;49
11;A Compliant Lightweight and Adaptable Active Ankle Foot Orthosis for Robotic Rehabilitation;50
11.1;1 Introduction;50
11.2;2 Mechanical Design of the AAFO;51
11.2.1;2.1 Ankle Actuator;51
11.2.2;2.2 Connections to the User;52
11.3;3 Ankle Actuator Characterization;53
11.4;4 Conclusion;54
11.5;References;54
12;A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons;55
12.1;1 Introduction;55
12.2;2 Conceptual Design of Novel Shoulder Mechanism for an Upper-Body Exoskeleton;56
12.3;3 Kinematic Analysis of the Mechanism;57
12.4;4 Application of the Novel Spherical Shoulder Mechanism;58
12.5;5 Conclusion;59
12.6;References;59
13;A Soft Robotic Extra-Finger and Arm Support to Recover Grasp Capabilities in Chronic Stroke Patients;61
13.1;1 Introduction;62
13.2;2 The Soft-SixthFinger and Robotic Arm System;63
13.3;3 Pilot Study;64
13.4;4 Conclusion;64
13.5;References;65
14;11 A Quasi-Passive Knee Exoskeleton to Assist During Descent;66
14.1;Abstract;66
14.2;1 Introduction;66
14.3;2 Materials and Methods;67
14.4;3 Results and Discussion;68
14.5;4 Conclusions;69
14.6;References;69
15;Wearable Sensory Apparatus for Multi-segment System Orientation Estimation with Long-Term Drift and Magnetic Disturbance Compensation;71
15.1;1 Introduction;71
15.2;2 Methods;72
15.2.1;2.1 Wearable Sensors;72
15.2.2;2.2 Kinematic Relations;73
15.2.3;2.3 Magnetic Model;73
15.2.4;2.4 Model-Based Extended Kalman Filter;73
15.3;3 Results;74
15.4;4 Discussion and Conclusion;75
15.5;References;75
16;13 A Portable Active Pelvis Orthosis for Ambulatory Movement Assistance;76
16.1;Abstract;76
16.2;1 Introduction;77
16.3;2 Materials and Methods;77
16.3.1;2.1 Mechanics;77
16.3.2;2.2 Actuation Units;78
16.3.3;2.3 Control;79
16.4;3 System Validation and Results;79
16.5;4 Discussion and Conclusion;80
16.6;References;80
17;Soft Wearable Robotics;82
18;14 XoSoft - A Vision for a Soft Modular Lower Limb Exoskeleton;83
18.1;Abstract;83
18.2;1 Introduction;84
18.3;2 User Centered Design;85
18.4;3 User Groups;86
18.5;4 System Description;86
18.6;5 Conclusions;87
18.7;Acknowledgment;87
18.8;References;87
19;15 On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device;89
19.1;Abstract;89
19.2;1 Introduction;90
19.3;2 Materials and Methods;90
19.3.1;2.1 Device Description;90
19.3.2;2.2 Subject Description;91
19.3.3;2.3 Exercise Description;91
19.4;3 Results;92
19.5;4 Conclusion;93
19.6;References;93
20;16 Design Improvement of a Polymer-Based Tendon-Driven Wearable Robotic Hand (Exo-Glove Poly);94
20.1;Abstract;94
20.2;1 Introduction;94
20.3;2 Design Improvement;96
20.3.1;2.1 Magnet Embedment;96
20.3.2;2.2 Tendon Length Adjustment Mechanism;97
20.4;3 Conclusion;98
20.5;References;98
21;17 Affective Touch and Low Power Artificial Muscles for Rehabilitative and Assistive Wearable Soft Robotics;99
21.1;Abstract;99
21.2;1 Introduction;99
21.3;2 Affective Touch;100
21.3.1;2.1 Affective Tactile Stimulation;101
21.4;3 Artificial Muscle Rehabilitation;101
21.5;4 Conclusions;103
21.6;References;103
22;18 Evaluation of Force Tracking Controller with Soft Exosuit for Hip Extension Assistance;105
22.1;Abstract;105
22.2;1 Introduction;105
22.3;2 Material and Methods;106
22.3.1;2.1 Sensing and Actuation;106
22.3.2;2.2 Force Tracking Controller Description;107
22.4;3 Results;107
22.5;4 Conclusion;108
22.6;Acknowledgments;108
22.7;References;108
23;Neural Interfacing of WRs;110
24;19 Endogenous Control of Powered Lower-Limb Exoskeleton;111
24.1;Abstract;111
24.2;1 Introduction;112
24.3;2 Method;112
24.3.1;2.1 Hardware Setup;112
24.3.2;2.2 Protocol;112
24.3.3;2.3 Experiment Scenario;113
24.3.4;2.4 Signal Processing and Decoding;114
24.4;3 Results;114
24.5;4 Discussion;115
24.6;References;115
25;20 Natural User-Controlled Ambulation of Lower Extremity Exoskeletons for Individuals with Spinal Cord Injury;116
25.1;Abstract;116
25.2;1 Introduction;117
25.3;2 Surrogate Articulation of Gait;117
25.4;3 Methods;118
25.4.1;3.1 Experimental Apparatus;118
25.4.2;3.2 Admittance Control of Hand-Walking;118
25.5;4 Results;119
25.6;References;120
26;Real-Time Modeling for Lower Limb Exoskeletons;121
26.1;1 Introduction;121
26.2;2 Method;122
26.2.1;2.1 Real-Time EMG-Driven NMS Modeling;122
26.2.2;2.2 Interface with the H2 Lower-Limb Exoskeleton;122
26.2.3;2.3 Experimental Protocol and Tests;123
26.3;3 Conclusion;124
26.4;References;124
27;22 Towards Everyday Shared Control of Lower Limb Exoskeletons;126
27.1;Abstract;126
27.2;1 Introduction;126
27.3;2 Shared Control;127
27.4;3 Lower Limb Exoskeletons;127
27.5;4 Discussion and Future Work;128
27.6;Acknowledgments;128
27.7;References;128
28;Biomechanics and Neurophysiological Studies with WRs;129
29;23 Joint-Level Responses to Counteract Perturbations Scale with Perturbation Magnitude and Direction;130
29.1;Abstract;130
29.2;1 Introduction;130
29.3;2 Materials and Methods;131
29.3.1;2.1 Experimental Setup and Protocol;131
29.3.2;2.2 Data Processing;131
29.4;3 Results;132
29.5;4 Discussion;133
29.6;5 Conclusions;133
29.7;References;133
30;24 Metabolic Energy Consumption in a Box-Lifting Task: A Parametric Study on the Assistive Torque;134
30.1;Abstract;134
30.2;1 Introduction;134
30.3;2 Methods;135
30.3.1;2.1 Musculoskeletal Model (MSM);135
30.3.2;2.2 Box-Lifting Movement;136
30.3.3;2.3 Metabolic Energy;136
30.3.4;2.4 Assistive Torque;136
30.3.5;2.5 Box Interaction with the MSM;137
30.4;3 Results;137
30.5;4 Discussion;138
30.6;5 Conclusions and Future Work;138
30.7;References;139
31;25 Analysis of the Movement Variability in Dance Activities Using Wearable Sensors;140
31.1;Abstract;140
31.2;1 Introduction;140
31.3;2 Methods;141
31.3.1;2.1 Time-Delay Embedding;141
31.3.2;2.2 Framework for the Experiment;141
31.3.3;2.3 Participants;142
31.3.4;2.4 Experiment Design;142
31.3.5;2.5 Data Collection;142
31.4;3 Results;143
31.5;4 Conclusion and Future Work;144
31.6;References;144
32;New Developments in Wearable Rehabilitation Robotics;146
33;26 Real Time Computation of Centroidal Momentum for the Use as a Stability Index Applicable to Human Walking with Exoskeleton;147
33.1;Abstract;147
33.2;1 Introduction;147
33.3;2 Centroidal Momentum;148
33.4;3 Real Time Computation of CM;149
33.4.1;3.1 Demonstration Platform;149
33.4.2;3.2 Demonstration During Natural Overground Walking;149
33.4.3;3.3 Demonstration During Walking with Tripping Events;149
33.5;4 Conclusion;151
33.6;Acknowledgments;151
33.7;References;151
34;A Versatile Neuromuscular Exoskeleton Controller for Gait Assistance: A Preliminary Study on Spinal Cord Injury Patients;152
34.1;1 Introduction;152
34.2;2 Materials and Methods;153
34.3;3 Results;153
34.4;4 Discussion;155
34.5;5 Conclusion;155
34.6;References;156
35;28 Introducing a Modular, Personalized Exoskeleton for Ankle and Knee Support of Individuals with a Spinal Cord Injury;157
35.1;Abstract;157
35.2;1 Introduction;157
35.3;2 Mechanical Design;159
35.4;3 Electronic Design;160
35.5;4 Specifications;160
35.6;5 Conclusion;160
35.7;Acknowledgments;160
35.8;References;161
36;29 Towards Exoskeletons with Balance Capacities;162
36.1;Abstract;162
36.2;1 Introduction;163
36.3;2 Materials and Methods;163
36.3.1;2.1 Experimental Setup and Protocol;163
36.4;3 Results;164
36.5;4 Discussion;165
36.6;5 Conclusions;165
36.7;References;166
37;30 EMG-Based Detection of User’s Intentions for Human-Machine Shared Control of an Assistive Upper-Limb Exoskeleton;167
37.1;Abstract;167
37.2;1 Introduction;167
37.3;2 Materials and Methods;168
37.3.1;2.1 Exoskeleton;168
37.3.2;2.2 Setup of the Study;168
37.3.3;2.3 Motion Intention Detection;169
37.3.4;2.4 Classification of Movement Direction;169
37.4;3 Results;170
37.5;4 Discussion;171
37.6;5 Conclusions;171
37.7;References;171
38;Legal Framework, Standardization and Ethical Issues in WRs;172
39;31 Safety Standardization of Wearable Robots—The Need for Testing Methods;173
39.1;Abstract;173
39.2;1 Introduction;173
39.3;2 Regulation of Wearable Robots;174
39.4;3 Need for Testing Procedures;176
39.5;4 Conclusion;176
39.6;References;177
40;32 The Potential and Acceptance of Exoskeletons in Industry;178
40.1;Abstract;178
40.2;1 Introduction;178
40.3;2 Methods;179
40.3.1;2.1 Stakeholder Analysis;179
40.3.2;2.2 Literature Review;179
40.3.3;2.3 Acceptance;179
40.4;3 Results;180
40.4.1;3.1 Stakeholder-Analysis Results;180
40.4.2;3.2 Literature Review Results;181
40.5;4 Discussion and Conclusions;181
40.6;Acknowledgments;181
40.7;References;182
41;33 Wearable Robots: A Legal Analysis;183
41.1;Abstract;183
41.2;1 Introduction;183
41.3;2 Legal Definitions;184
41.4;3 Liability and Insurance;184
41.5;4 Human Enhancement;185
41.6;5 Final Considerations;186
41.7;References;186
42;34 A Verification Method for Testing Abrasion in the Use of Restraint Type Personal Care Robots;187
42.1;Abstract;187
42.2;1 Introduction;187
42.3;2 Verification Test Method for Abrasion Risk;188
42.4;3 Validation of the Verified Data;190
42.5;4 Conclusion;191
42.6;Acknowledgments;191
42.7;References;191
43;Benchmarking in WRs and Related Communities;192
44;35 Kinematic Comparison of Gait Rehabilitation with Exoskeleton and End-Effector Devices;193
44.1;Abstract;193
44.2;1 Introduction;193
44.3;2 Materials and Methods;194
44.3.1;2.1 Robot Systems: Exoskeleton and End-Effector Devices;194
44.3.2;2.2 Procedure and Instrumentation;195
44.4;3 Results and Discussion;195
44.4.1;3.1 Comparison of Gait Motion Trajectory;195
44.4.2;3.2 Comparison of Stair Climbing and Descending Motion;196
44.5;4 Conclusion;197
44.6;References;197
45;36 Evaluating the Gait of Lower Limb Prosthesis Users;198
45.1;Abstract;198
45.2;1 Introduction;199
45.3;2 Methods;199
45.3.1;2.1 The CAREN System;199
45.3.2;2.2 Data Collection and Analysis;200
45.4;3 Results;201
45.5;4 Discussion;202
45.6;5 Conclusion;202
45.7;References;202
46;37 Some Considerations on Benchmarking of Wearable Robots for Mobility;204
46.1;Abstract;204
46.2;1 Introduction;204
46.3;2 Metabolic Cost of Walking;205
46.4;3 Balance Performance;206
46.5;4 Conclusion;207
46.6;References;207
47;Benchmarking Data for Human Walking in Different Scenarios;209
47.1;1 Introduction;209
47.2;2 The Koroibot Project and the Koroibot Motion Capture Database;210
47.3;3 Human Walking Reference Data;211
47.4;4 Conclusion & Outlook;211
47.5;References;212
48;39 Clinical Gait Assessment in Relation to Benchmarking Robot Locomotion;213
48.1;Abstract;213
48.2;1 Introduction;213
48.2.1;1.1 Taxonomies Related to International Classification of Functioning;214
48.2.2;1.2 Clinical Assessments for Bipedal Locomotion;215
48.3;2 Method;216
48.4;3 Results;216
48.5;4 Discussion;216
48.6;5 Conclusion;217
48.7;References;217
49;Symbiotic Control of WRs;218
50;Attention Level Measurement During Exoskeleton Rehabilitation Through a BMI System;219
50.1;1 Introduction;219
50.2;2 Materials and Methods;220
50.2.1;2.1 Ankle Exoskeleton;220
50.2.2;2.2 EEG Acquisition;220
50.2.3;2.3 EEG Real Time Processing and Feature Extraction;221
50.2.4;2.4 EEG Classification;221
50.2.5;2.5 Experimental Protocol;221
50.3;3 Results and Discussion;222
50.4;4 Conclusions;222
50.5;References;223
51;41 Detection of Subject’s Intention to Trigger Transitions Between Sit, Stand and Walk with a Lower Limb Exoskeleton;224
51.1;Abstract;224
51.2;1 Introduction;225
51.3;2 Materials and Methods;225
51.3.1;2.1 Material;225
51.3.2;2.2 Protocol;226
51.3.3;2.3 Classifier;226
51.4;3 Results;227
51.5;4 Discussion;227
51.6;5 Conclusions;228
51.7;References;228
52;The New Generation of Compliant Actuators for Use in Controllable Bio-Inspired Wearable Robots;229
52.1;1 Introduction;229
52.2;2 Compliant Actuation in WRs for Gait;230
52.3;3 Control Strategy;232
52.4;4 Conclusion;233
52.5;References;233
53;An EMG-informed Model to Evaluate Assistance of the Biomot Compliant Ankle Actuator;234
53.1;1 Introduction;234
53.2;2 Materials and Methods;235
53.3;3 Results;236
53.4;4 Discussion;237
53.5;5 Conclusions;237
53.6;References;238
54;Tacit Adaptability of a Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator, a Preliminary Study;239
54.1;1 Introduction;239
54.2;2 Materials and Methods;240
54.3;3 Results;241
54.4;4 Conclusion;242
54.5;5 Futute Work;242
54.6;References;243
55;Emerging Applications Domains of WRs, Emerging Technologies in WRs;244
56;Design and Kinematic Analysis of the Hanyang Exoskeleton Assistive Robot (HEXAR) for Human Synchronized Motion;245
56.1;1 Introduction;245
56.2;2 System Requirements;246
56.3;3 Mechanical Design of HEXAR-CR50;246
56.4;4 Kinematic Simulation with Walking Motions;247
56.5;5 Conclusion;248
56.6;References;249
57;46 Design and Experimental Evaluation of a Low-Cost Robotic Orthosis for Gait Assistance in Subjects with Spinal Cord Injury;250
57.1;Abstract;250
57.2;1 Introduction;250
57.3;2 Robotic Orthosis Design;251
57.3.1;2.1 Knee Actuation System;252
57.3.2;2.2 Sensors and Control;252
57.4;3 Experimental Evaluation;253
57.5;4 Conclusion;254
57.6;References;254
58;A Powered Low-Back Exoskeleton for Industrial Handling: Considerations on Controls;255
58.1;1 Introduction;255
58.2;2 Low-Back Exoskeleton;256
58.3;3 Low-Level: Actuator Control;257
58.4;4 High-Level: Assistive Strategy;257
58.5;5 Conclusions;258
58.6;References;258
59;48 Efficient Lower Limb Exoskeleton for Human Motion Assistance;260
59.1;Abstract;260
59.2;1 Introduction;260
59.3;2 Mechanical Design and Components;261
59.4;3 Exoskeleton Operation;262
59.5;4 Conclusion;263
59.6;References;263
60;Active Safety Functions for Industrial Lower Body Exoskeletons: Concept and Assessment;265
60.1;1 Introduction;265
60.2;2 Active Safety Functional Concepts;266
60.3;3 Hazard Analysis and Risk Assessment;268
60.4;4 Conclusions;269
60.5;References;269
61;50 SOLEUS: Ankle Foot Orthosis for Space Countermeasure with Immersive Virtual Reality;270
61.1;Abstract;270
61.2;1 Introduction;270
61.3;2 SOLEUS Project Expected Benefits;271
61.4;3 SOLEUS System Architecture;272
61.4.1;3.1 Exoskeletons Subsystem;272
61.4.2;3.2 Virtual Reality Subsystem;272
61.5;4 Musculo-Skeletal Simulations;273
61.6;5 Scientific Evaluation;273
61.7;6 Conclusion;274
61.8;Acknowledgments;274
61.9;References;274
62;SPEXOR: Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration;275
62.1;1 Context;276
62.2;2 Objectives;276
62.3;3 Going Beyond the State of the Art;277
62.4;References;279
63;Posters;280
64;52 HeSA, Hip Exoskeleton for Superior Assistance;281
64.1;Abstract;281
64.2;1 Introduction;281
64.3;2 Design;282
64.4;3 Control;282
64.5;4 Testing;283
64.6;5 Conclusion;284
64.7;Acknowledgments;285
64.8;References;285
65;SPEXOR: Towards a Passive Spinal Exoskeleton;286
65.1;1 Introduction;287
65.2;2 SOTA of Passive Exoskeletons;288
65.3;3 Going Beyond;288
65.4;4 Conclusion;289
65.5;References;289
66;54 Autonomous Soft Exosuit for Hip Extension Assistance;291
66.1;Abstract;291
66.2;1 Introduction;291
66.3;2 System Description;292
66.3.1;2.1 Actuation and Suit;292
66.3.2;2.2 IMU-Based Iterative Controller;293
66.4;3 Results;294
66.5;4 Conclusion;294
66.6;References;295
67;55 Comparison of Ankle Moment Inspired and Ankle Positive Power Inspired Controllers for a Multi-Articular Soft Exosuit for Walking Assistance;296
67.1;Abstract;296
67.2;1 Introduction;297
67.3;2 Methods;297
67.4;3 Results;298
67.5;4 Discussion & Conclusion;299
67.6;Acknowledgments;299
67.7;References;300
68;56 Biomechanical Analysis and Inertial Sensing of Ankle Joint While Stepping on an Unanticipated Bump;301
68.1;Abstract;301
68.2;1 Introduction;301
68.3;2 Methods;302
68.4;3 Results;303
68.5;4 Discussion and Conclusion;304
68.6;Acknowledgments;305
68.7;References;305
69;57 A Novel Approach to Increase Upper Extremity Active Range of Motion for Individuals with Duchenne Muscular Dystrophy Using Admittance Control: A Preliminary Study;306
69.1;Abstract;306
69.2;1 Introduction;306
69.3;2 Materials and Methods;307
69.4;3 Results;309
69.5;4 Discussion and Conclusion;310
69.6;Acknowledgments;310
69.7;References;310
70;58 Modulation of Knee Range of Motion and Time to Rest in Cerebral Palsy Using Two Forms of Mechanical Stimulation;311
70.1;Abstract;311
70.2;1 Introduction;312
70.3;2 Materials and Methods;313
70.3.1;2.1 Whole Body Vibration (WBV);313
70.3.2;2.2 Vestibular Stimulation (VS);313
70.3.3;2.3 Assessment Technique;313
70.4;3 Results;314
70.5;4 Discussion;314
70.6;5 Conclusion;315
70.7;References;315
71;59 Training Response to Longitudinal Powered Exoskeleton Training for SCI;316
71.1;Abstract;316
71.2;1 Introduction;316
71.3;2 Materials and Methods;317
71.3.1;2.1 Experimental Test Conditions;317
71.3.2;2.2 Data Collection and Analysis;318
71.4;3 Results;318
71.4.1;3.1 Demographics;318
71.4.2;3.2 Spatial Temporal Parameters;318
71.4.3;3.3 Correlation of Temporal-Spatial Measures to Velocity;318
71.4.4;3.4 CoM;319
71.4.5;3.5 Able Bodied with EksoGT™;319
71.5;4 Discussion;320
71.6;5 Conclusion;320
71.7;Acknowledgments;320
71.8;References;321
72;60 Adaptive Classification of Arbitrary Activities Through Hidden Markov Modeling with Automated Optimal Initialization;322
72.1;Abstract;322
72.2;1 Introduction;322
72.3;2 Methods;323
72.4;3 Results;324
72.5;4 Discussion and Conclusion;325
72.6;References;326
73;Design and Motion Analysis of a Wearable and Portable Hand Exoskeleton;327
73.1;1 Introduction;327
73.2;2 Design Phase;328
73.3;3 Results;329
73.4;4 Conclusion;330
73.5;References;330
74;Nitiglove: Nitinol-Driven Robotic Glove Used to Assist Therapy for Hand Mobility Recovery;332
74.1;1 Introduction;332
74.2;2 Engineering Design Process;333
74.2.1;2.1 Muscle Wires;333
74.2.2;2.2 Flex Sensors;334
74.2.3;2.3 Results;335
74.3;3 Conclusion;336
74.4;References;336
75;63 3D Printed Arm Exoskeleton for Teleoperation and Manipulation Applications;337
75.1;Abstract;337
75.2;1 Introduction;337
75.3;2 Exoskeleton Design;338
75.3.1;2.1 Mechanical Design;338
75.3.2;2.2 Mechatronics;339
75.4;3 Application 1: ICARUS;339
75.5;4 Application 2: DEXROV;340
75.6;Acknowledgments;341
75.7;References;341
76;64 Musculoskeletal Simulation of SOLEUS Ankle Exoskeleton for Countermeasure Exercise in Space;342
76.1;Abstract;342
76.2;1 Introduction;343
76.3;2 Methods;343
76.3.1;2.1 Musculoskeletal Human Model;343
76.3.2;2.2 Definition of Pedal-Pulling Motion;344
76.3.3;2.3 Conditions of the Linear Actuators;344
76.3.4;2.4 Interactions Between Human and SOLEUS System;344
76.3.5;2.5 Inverse Dynamics of Musculoskeletal System;345
76.4;3 Results;345
76.5;4 Conclusion;346
76.6;Acknowledgments;347
76.7;References;347
77;65 Human Gait Feature Detection Using Inertial Sensors Wavelets;348
77.1;Abstract;348
77.2;1 Introduction;348
77.3;2 Wireless Sensing System;349
77.4;3 Wavelet Analysis;350
77.5;4 Conclusion;351
77.6;References;352
78;On the Importance of a Motor Model for the Optimization of SEA-driven Prosthetic Ankles;353
78.1;1 Introduction;353
78.2;2 Materials and Methods;354
78.3;3 Results and Discussion;355
78.4;4 Conclusion;356
78.5;References;357
79;67 Assessment of a 7-DOF Hand Exoskeleton for Neurorehabilitation;358
79.1;Abstract;358
79.2;1 Introduction;358
79.3;2 Design Components;359
79.3.1;2.1 Admittance Control Paradigm;359
79.3.2;2.2 Wrist End Effector;360
79.3.3;2.3 Modular Gripper;360
79.3.4;2.4 Virtual Environment;361
79.4;3 Methods;361
79.5;4 Conclusion;362
79.6;References;362
80;Improving the Standing Balance of People with Spinal Cord Injury Through the Use of a Powered Ankle-Foot Orthosis;363
80.1;1 Introduction;363
80.2;2 Materials and Methods;364
80.3;3 Results;365
80.4;4 Discussion;365
80.5;5 Conclusions;367
80.6;References;367
81;Transparent Mode for Lower Limb Exoskeleton;368
81.1;1 Introduction;368
81.2;2 Experimental Set-Up;369
81.3;3 Gravity Compensation;369
81.4;4 Friction Compensation;370
81.5;5 Interaction Force;370
81.6;6 Control System;371
81.7;7 Conclusion;371
81.8;References;372
82;70 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching by Learning and Coordination of Interactive Impedance;373
82.1;Abstract;373
82.2;1 Introduction;373
82.3;2 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching;374
82.4;3 Co-Adaptive Optimal Control Framework;376
82.5;References;377
83;Upper Limb Exoskeleton Control for Isotropic Sensitivity of Human Arm;379
83.1;1 Introduction;379
83.2;2 Materials and Methods;380
83.2.1;2.1 Manipulability;380
83.2.2;2.2 Mobility;380
83.2.3;2.3 Control Method;381
83.3;3 Experiments and Results;381
83.4;4 Conclusions;383
83.5;References;383
84;72 AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases;384
84.1;Abstract;384
84.2;1 Introduction;384
84.3;2 Walking Impairments;385
84.4;3 Trends of Existing Medical Devices;386
84.4.1;3.1 Human-Robot Interaction;386
84.4.2;3.2 Design Architecture;386
84.5;4 Challenges Toward Assistive Devices;387
84.5.1;4.1 Human-Robot Interaction;387
84.5.2;4.2 Design Architecture;387
84.6;5 Conclusion;388
84.7;References;388
85;Passive Lower Back Moment Support in a Wearable Lifting Aid: Counterweight Versus Springs;389
85.1;1 Introduction;389
85.2;2 Materials and Methods;390
85.3;3 Results;392
85.4;4 Discussion;392
85.5;References;393