Buch, Englisch, 400 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g
Concepts and Applications
Buch, Englisch, 400 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 820 g
ISBN: 978-0-323-91776-6
Verlag: William Andrew Publishing
Statistical Modeling in Machine Learning: Concepts and Applications will help statisticians, machine learning practitioners and programmers solving various tasks such as classification, regression, clustering, forecasting, recommending and more.
Zielgruppe
Researchers, developers, and industry professionals in Information Technology and Computer Science, such as developers of AI, Machine Learning,and Deep Learning, as well as other research fields, including Biomedical.
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie
Weitere Infos & Material
1. Introduction to Statistical Modelling in Machine Learning - A Case Study
2. A Technique of Data Collection- Web Scraping with Python
3. Analysis of Covid-19 using Machine Learning Techniques
4. Discriminative Dictionary Learning based on Statistical Methods
5. Artificial Intelligence based Uncertainty Quantification technique for External flow CFD simulations
6. Music Genres Classification
7. Classification Model of Machine Learning for Medical Data Analysis
8. Regression Models for Machine learning
9. Model Selection and Regularization
10. Data Clustering using Unsupervised Machine Learning
11. Emotion-based classification through fuzzy entropy enhanced FCM clustering
12. Fundamental Optimization Methods for Machine Learning
13. Stochastic Optimization of Industrial Grinding Operation through Data-Driven Robust Optimization
14. Dimensionality Reduction using PCAs in Feature Partitioning Framework
15. Impact of Mid-Day Meal Scheme in Primary Schools in India using Exploratory Data Analysis and Data Visualisation
16. Nonlinear System Identification of Environmental pollutants using Recurrent Neural Networks and Global Sensitivity Analysis
17. Comparative Study of Automated Deep Learning Techniques for Wind Time Series Forecasting