Gray | Entropy and Information Theory | Buch | 978-1-4419-7969-8 | sack.de

Buch, Englisch, 409 Seiten, Format (B × H): 167 mm x 243 mm, Gewicht: 1750 g

Gray

Entropy and Information Theory


2. 2011 Auflage 2011
ISBN: 978-1-4419-7969-8
Verlag: Springer Us

Buch, Englisch, 409 Seiten, Format (B × H): 167 mm x 243 mm, Gewicht: 1750 g

ISBN: 978-1-4419-7969-8
Verlag: Springer Us


This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties.

New in this edition:

  • Expanded treatment of stationary or sliding-block codes and their relations to traditional block codes
  • Expanded discussion of results from ergodic theory relevant to information theory
  • Expanded treatment of B-processes -- processes formed by stationary coding memoryless sources
  • New material on trading off information and distortion, including the Marton inequality
  • New material on the properties of optimal and asymptotically optimal source codes
  • New material on the relationships of source coding and rate-constrained simulation or modeling of random processes

Significant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

Gray Entropy and Information Theory jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Introduction.- Information Sources.- Pair Processes: Channels, Codes, and Couplings.- Entropy.- The Entropy Ergodic Theorem.- Distortion and Approximation.- Distortion and Entropy.- Relative Entropy.- Information Rates.- Distortion vs. Rate.- Relative Entropy Rates.- Ergodic Theorems for Densities.- Source Coding Theorems.- Coding for Noisy Channels.- Bibliography.- References.- Index


Robert M. Gray is the Alcatel-Lucent Technologies Professor of Communications and Networking in the School of Engineering and Professor of Electrical Engineering at Stanford University. For over four decades he has done research, taught, and published in the areas of information theory and statistical signal processing. He is a Fellow of the IEEE and the Institute for Mathematical Statistics. He has won several professional awards, including a Guggenheim Fellowship, the Society Award and Education Award of the IEEE Signal Processing Society, the Claude E. Shannon Award from the IEEE Information Theory Society, the Jack S. Kilby Signal Processing Medal, Centennial Medal, and Third Millennium Medal from the IEEE, and a Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM). He is a member of the National Academy of Engineering.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.