Gregory | Bayesian Logical Data Analysis for the Physical Sciences | Buch | 978-0-521-84150-4 | sack.de

Buch, Englisch, 488 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1104 g

Gregory

Bayesian Logical Data Analysis for the Physical Sciences

A Comparative Approach with Mathematica Support
Erscheinungsjahr 2011
ISBN: 978-0-521-84150-4
Verlag: Cambridge University Press

A Comparative Approach with Mathematica Support

Buch, Englisch, 488 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1104 g

ISBN: 978-0-521-84150-4
Verlag: Cambridge University Press


Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.

Gregory Bayesian Logical Data Analysis for the Physical Sciences jetzt bestellen!

Weitere Infos & Material


Preface; Acknowledgements; 1. Role of probability theory in science; 2. Probability theory as extended logic; 3. The how-to of Bayesian inference; 4. Assigning probabilities; 5. Frequentist statistical inference; 6. What is a statistic?; 7. Frequentist hypothesis testing; 8. Maximum entropy probabilities; 9. Bayesian inference (Gaussian errors); 10. Linear model fitting (Gaussian errors); 11. Nonlinear model fitting; 12. Markov Chain Monte Carlo; 13. Bayesian spectral analysis; 14. Bayesian inference (Poisson sampling); Appendix A. Singular value decomposition; Appendix B. Discrete Fourier transforms; Appendix C. Difference in two samples; Appendix D. Poisson ON/OFF details; Appendix E. Multivariate Gaussian from maximum entropy; References; Index.


Gregory, Phil
Phil Gregory is Professor Emeritus at the Department of Physics and Astronomy at the University of British Columbia.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.