Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g
Using Bayesian Belief Networks to Solve Complex Problems
Buch, Englisch, 260 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g
ISBN: 978-3-319-83937-0
Verlag: Springer International Publishing
This book is an extension of the author’s first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.
The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes’ theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem—as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes.It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Bayesianische Inferenz
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Betriebswirtschaft Management
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
Weitere Infos & Material
1. Introduction.- 1.1 Bayes' Theorem: An Introduction.- 1.2 Protocol.- 1.3 Data.- 1.4 Statistical Properties of Bayes' Theorem.- 1.5 Base Matrices.- 1.5.1 Event A Node.- 2. Base Matrices.- 2.1 Event A Node.- 2.1.1 Event A Node-Prior Counts.- 2.1.2 Module A-Prior Probabilities.- 2.2 Event B.- 2.2.1 Event B Node-Likelihood Counts.- 2.2.2 Module B Node.- 2.2.3 Event B Node-Counts.- 2.2.4 Event B Node-Likelihood Probabilities.- 2.3 Event C Node.- 2.3.1 Event C Node-Counts.- 2.3.2 Event C Node-Likelihood Probabilities.- 2.3.3 Event C Node-Counts.- 2.3.4 Event C Node-Likelihood Probabilities.- 2.3.5 Event C Node-Counts.- 2.3.6 Event C Node-Likelihood Probabilities.- 2.3.7 Event C Node-Counts.- 2.3.8 Event C Node-Probabilities.- 2.4 Event D Node.- 2.4.1 Event D Node-Counts.- 2.4.2 Event D Node-Likelihood Probabilities.- 2.5 Event D Node-Counts.- 2.5.1 Event D Node-Likelihood Probabilities.- 2.5.2 Event D Node-Counts.- 2.5.3 Event D Node-Likelihood Probabilities.- 2.5.4 Event D Node-Counts.- 2.5.5 Event D Node-Likelihood Probabilities.- 2.5.6 Event D Node-Counts.- 2.5.7 Event D Node-Likelihood Probabilities.- 2.5.8 Event D Node-Counts.- 2.5.9 Event D Node-Likelihood Probabilities.- 2.5.10 Event D Node-Counts.- 2.5.11 Event D Node-Likelihood Probabilities.- 3. 2-Event 1-Path BBN.- 3.1 [A] [B].- 3.1.1 2-Event BBN Proof.- 3.1.2 BBN Specification.- 4.3-Event 2-Path BBNs.- 4.1 [AB AC].- 4.1.1 Proof.- 4.1.2 BBN Specification.- 4.2 [AC BC].- 4.2.1 Proof.- 4.2.2 BBN Specification.- 4.3 [AB BC].- 4.3.1 Proof.- 4.3.2 BBN Specification.- 5. 3-Event 3-Path BBNs.- 5.1 3-Paths-[AB AC BC].- 5.1.1 Proof.- 5.1.2 BBN Probabilities.