Güneysu | Covariant Schrödinger Semigroups on Riemannian Manifolds | Buch | 978-3-319-68902-9 | sack.de

Buch, Englisch, Band 264, 239 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 559 g

Reihe: Operator Theory: Advances and Applications

Güneysu

Covariant Schrödinger Semigroups on Riemannian Manifolds


1. Auflage 2017
ISBN: 978-3-319-68902-9
Verlag: Springer International Publishing

Buch, Englisch, Band 264, 239 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 559 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-319-68902-9
Verlag: Springer International Publishing


This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities. 

The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials.

The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..

Güneysu Covariant Schrödinger Semigroups on Riemannian Manifolds jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Sobolev spaces on vector bundles.- Smooth heat kernels on vector bundles.- Basis differential operators on Riemannian manifolds.- Some specific results for the minimal heat kernel.- Wiener measure and Brownian motion on Riemannian manifolds.- Contractive Dynkin potentials and Kato potentials.- Foundations of covariant Schrödinger semigroups.- Compactness of resolvents for covariant Schrödinger operators.- L^p properties of covariant Schrödinger semigroups.- Continuity properties of covariant Schrödinger semigroups.- Integral kernels for covariant Schrödinger semigroup.- Essential self-adjointness of covariant Schrödinger semigroups.- Form cores.- Applications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.