Gupta / Agrawal / Cengis | Machine Intelligence and Smart Systems | Buch | 978-3-031-31722-4 | sack.de

Buch, Englisch, 353 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

Gupta / Agrawal / Cengis

Machine Intelligence and Smart Systems

Third International Conference, MISS 2023, Bhopal, India, January 24-25, 2023, Revised Selected Papers, Part I
2024
ISBN: 978-3-031-31722-4
Verlag: Springer Nature Switzerland

Third International Conference, MISS 2023, Bhopal, India, January 24-25, 2023, Revised Selected Papers, Part I

Buch, Englisch, 353 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-31722-4
Verlag: Springer Nature Switzerland


The two-volume set CCIS 1951 and 1952 constitutes the refereed post-conference proceedings of the Third International Conference on Machine Intelligence and Smart Systems, MISS 2023, Bhopal, India, during January 24-25, 2023. 

The 58 full papers included in this book were carefully reviewed and selected from 203 submissions. They were organized in topical sections as follows: Language processing; Recent trends; AI defensive schemes; Principle components; Deduction and prevention models.

Gupta / Agrawal / Cengis Machine Intelligence and Smart Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Machine Intelligence.

.- Deep Learning based Novel Approach for Mammogram Classification using Densenet-169.

.- Attribute Based Federated-Reinforcement Learning Approach for Drone Authorization.

.- Chronic Kidney Disease prediction and interpretation using Explainable AI.

.- Systematic review and analysis of Artificial intelligence based breast cancer classification and detection.

.- War of Tweets: Sentiment Analysis on Ukraine Russia Conflict.

.- Implementing HRRN for evaluating Cloud performance using Reinforcement Learning.

.- Using Machine Learning for Prediction of Obstructions for Indoor Location Systems.

.- Privacy Threats and Protection in Artificial Intelligence and Machine Learning.

.- Combining linguistic information with BERT for Span based End-to-End Aspect Based Sentiment Analysis.

.- A Dimensionality Reduction Model: A Retrospective Approach on Dementia Triggering Parameters and Feature Ranking.

.- Effective Identification of Lung Diseases using Few-Shot Learning.

.- Comparative Study on Classification based- Data Mining Techniques in Early Diabetes Prediction.

.- Optimize Machine Learning Model for Sentiment Analysis of Online Education during Covid-19 Pandemic.

.- Review on the Challenges and Future Directions of Deep Learning-based Techniques for Advance Prediction of Cardiac Attack.

.- Different Techniques For Detecting  Plant Leaf Disease Using Machine  Learning.

.- Proposed Framework of Extensive Humanoid Design Cycle and Recent Developments in Bipedal Walk.

.- Natural Language Processing for Waste Management Using Public Opinions in Smart Cities.

.- Prediction of Diabetes during Pregnancy through Fog Environment.

.- Empirical Wavelet Transform grounded poignant ground target recognition and classification by Seismic Signal Processing.

.- A Powered-Up Classification of Disabling Distributed Network Cloud-Based Attacks Using MLPNN-BP and MLPNN-LM.

.- Stroke Prediction Framework Based on Missing Value Information and Outlier Detection by Using Machine Learning Techniques in E-Healthcare.

.- An Artificial Bee Colony Improved Deep Neural Network Prototypical for Controlling Unprovoked Stroke Data in Iot Environment.

.- Magnetic Resonance Imaging Digitization for Brain Abnormality Recognition.

.- Comparative investigation of ELM and No-Prop processes for Clustering and Classification: An Empirical Study.

.- Application of Theory of Nonlinear Dynamics to Study Automated Detection of Epileptic EEG Signals.

.- Writer-autonomous Offline Autograph Detection founded upon Histogram of oriented gradients (HOGs) feature.

.- Analysis & evaluation for segmentation of cancer in multi-parametric.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.