E-Book, Englisch, 336 Seiten
Gurfil Modern Astrodynamics
1. Auflage 2006
ISBN: 978-0-08-046491-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 336 Seiten
ISBN: 978-0-08-046491-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
In recent years, an unprecedented interest in novel and revolutionary space missions has risen out of the advanced NASA and ESA programs. Astrophysicists, astronomers, space systems engineers, mathematicians and scientists have been cooperating to implement novel and ground-breaking space missions. Recent progress in mathematical dynamics has enabled development of specialised spacecraft orbits and propulsion systems. Recently, the concept of flying spacecraft in formation has gained a lot of interest within the community. These progresses constitute the background to a significant renaissance of research dealing with astrodynamics and its applications.
'Modern Astrodynamics” is designed as a stepping stone for the exposition of modern astrodynamics to students, researchers, engineers and scientists. This volume will present the main constituents of the astrodynamical science in an elaborate, comprehensive and rigorous manner. Although the volume will contain a few distinct chapters, it will render a coherent portrayal of astrodynamics.
* encompasses the main constituents of the astrodynamical sciences in an elaborate, comprehensive and rigorous manner
* presents recent astrodynamical advances and describes the challenges ahead
* the first volume of a series designed to give scientists and engineers worldwide an opportunity to publish their works in this multi-disciplinary field
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Title Page;4
3;Copyright Page;5
4;Table of Contents;6
5;Foreword;10
6;Introduction;12
7;Chapter 1 Perturbed Motion;16
7.1;1.1 Basic definitions;16
7.2;1.2 Forces;18
7.3;1.3 Gravity;19
7.4;1.4 Drag;22
7.5;1.5 3-Body;27
7.6;1.6 Solar radiation pressure;27
7.7;1.7 Tides;28
7.8;1.8 Albedo;29
7.9;1.9 Other;29
7.10;1.10 Propagating the orbit;30
7.11;1.11 Analytical;30
7.12;1.12 Numerical;30
7.13;1.13 Semianalytical;31
7.14;1.14 Variation of parameters;31
7.15;1.15 Lagrangian VOP—conservative forces;32
7.16;1.16 Gaussian VOP—nonconservative forces;33
7.17;1.17 Effect on orbits;34
7.18;1.18 J2 Only;34
7.19;1.19 Comparative force model effects;35
7.20;1.20 Conclusions;36
7.21;References;36
8;Chapter 2 Gauge Freedom in Astrodynamics;38
8.1;2.1 Introduction;38
8.2;2.2 Gauge freedom in the theory of orbits;49
8.3;2.3 A practical example on gauges: a satellite orbiting a precessing oblate planet;54
8.4;2.4 Conclusions: how we benefit from the gauge freedom;63
8.5;Appendix 1. Mathematical formalities: Orbital dynamics inthe normal form of Cauchy;64
8.6;Appendix 2. Precession of the equator of date relative tothe equator of epoch;65
8.7;References;66
9;Chapter 3 Solving Two-Point Boundary Value ProblemsUsing Generating Functions: Theory and Applicationsto Astrodynamics;68
9.1;3.1 Introduction;68
9.2;3.2 Solving two-point boundary value problems;71
9.3;3.3 Hamilton’s principal function;89
9.4;3.4 Local solutions of the Hamilton–Jacobi equation;92
9.5;3.5 Applications;105
9.6;3.6 Conclusions;113
9.7;Appendix A. The Hamilton–Jacobi equation at higher orders;114
9.8;Appendix B. The Hill three-body problem;117
9.9;References;119
10;Chapter 4 Low-Energy Transfers and Applications;122
10.1;4.1 Introduction;122
10.2;4.2 Capture problem, models, and transfer types;123
10.3;4.3 Ballistic capture regions and transfers;127
10.4;4.4 Chaos and weak capture;135
10.5;4.5 Origin of the Moon;138
10.6;References;140
11;Chapter 5 Set Oriented Numerical Methods in Space Mission Design;142
11.1;5.1 Introduction;142
11.2;5.2 Dynamical systems and mission design;142
11.3;5.3 Set oriented numerics;145
11.4;5.4 Computing invariant manifolds;150
11.5;5.5 Detecting connecting orbits;154
11.6;5.6 Extension to controlled systems;160
11.7;5.7 Conclusion;166
11.8;References;166
12;Chapter 6 Space Trajectory Optimization and L1-OptimalControl Problems;170
12.1;6.1 Introduction;170
12.2;6.2 Geometry and the mass flow equations;173
12.3;6.3 Cost functions and Lebesgue norms;175
12.4;6.4 Double integrator example;179
12.5;6.5 Issues in solving nonlinear L1-optimal control problems;185
12.6;6.6 Solving nonlinear L1-optimal control problems;190
12.7;6.7 L1-Formulation of the minimum-fuel orbit transfer problem;194
12.8;6.8 A simple extension to distributed space systems;196
12.9;6.9 Conclusions;200
12.10;References;201
13;Chapter 7 Orbital Mechanics of Propellantless Propulsion Systems;204
13.1;7.1 Introduction;204
13.2;7.2 Solar sailing;205
13.3;7.3 Solar sail orbital mechanics;210
13.4;7.4 Artificial three-body equilibria for solar sails;213
13.5;7.5 Mission applications;218
13.6;7.6 Tethers in space;223
13.7;7.7 Tethers in orbit;232
13.8;7.8 Conclusions;247
13.9;References;248
14;Chapter 8 Cooperative Spacecraft Formation Flying: Model PredictiveControl with Open- and Closed-Loop Robustness;252
14.1;8.1 Introduction;252
14.2;8.2 Dynamics of formation flight;254
14.3;8.3 Formation flight control and the model predictive control formulation;258
14.4;8.4 Distributed coordination through virtual center;264
14.5;8.5 Open loop robust control and replan frequency;275
14.6;8.6 Using closed-loop robust MPC;280
14.7;8.7 Conclusions;288
14.8;8.8 Nomenclature;289
14.9;References;289
15;Index;294
16;Color Plate;300