Guru / Y. H. / K. | Cognition and Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1697, 422 Seiten, eBook

Reihe: Communications in Computer and Information Science

Guru / Y. H. / K. Cognition and Recognition

8th International Conference, ICCR 2021, Mandya, India, December 30–31, 2021, Revised Selected Papers
1. Auflage 2022
ISBN: 978-3-031-22405-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

8th International Conference, ICCR 2021, Mandya, India, December 30–31, 2021, Revised Selected Papers

E-Book, Englisch, Band 1697, 422 Seiten, eBook

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-22405-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume constitutes the refereed proceedings of the Eighth International Conference on Cognition and Recognition, ICCR 2021, held in Mandya, India, in December 2021. The 24 full papers and 9 short papers presented were carefully reviewed and selected from 150 submissions. The ICCR conference aims to bring together leading academic Scientists, Researchers and Research scholars to exchange and share their experiences and research results on all aspects of Computer Vision, Image Processing Machine Learning and Deep Learning Technologies.
Guru / Y. H. / K. Cognition and Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Review On Detection Of Vein Pattern In Human Body For The Biometric Applications.- An Automated CAD System for Classification of Lung Module.- An Hybrid Method for Fingerprint image classification.- Analysis of Individual household electricity consumption forecasting using ARIMA model, CNN and LSTM model.- Anomaly Detection in Social Media using Text-Mining and Emotion Classification with Emotion Detection.- Approach to Machine Learning for Secured Cloud Computing.- Automated classification of wheat varieties using soft computing techniques.- Character Recognition in Scene Images using MSER and CNN.- Chatbot-An intelligent virtual medical assistant.- Children Facial Growth Pattern Analysis Using Deep Convolutional Neural Networks.- Classification of Forged Logo Images.- COVID-19 Detection using Deep learning based Medical Image Segmentation.- Depth Based Static Hand Gesture Segmentation and Recognition.- EAP based certificateless authentication technique to access cloud services in Openstack.- Efficient Deep Learning Methods For Identification Of Defective Casting Products.- Efficient Feature Selection Algorithm for Gene Classification.- Ensemble Architecture for improved Image Classification.- Evaluating Infrared Thermal Image's Color Palettes in Hot Tropical Region.- Experimenting Encoder-Decoder Architecture for Visual Image Captioning.- Face Image based Gender Classification of Children.- Fusion of Features from Mammogram and DBT Views for Detection of Breast Tumour.- Hand Gesture Recognition in Complex Background.- Helmet Detection and License Plate Extraction using Machine Learning and Computer Vision..- HWCD: A Hybrid Approach for Image Compression Using Wavelet, Encryption Using Confusion And Decryption Using Diffusion Scheme.- Hybrid deep learning models for improving stock index prediction.- Nuclei Segmentation of Microscopic Images from Multiple Organs using Deep Learning.- Online Shopping Fake Reviews Detection using Machine Learning.- Performing Software Defect Prediction using Deep Learning.- Real-Time Phishing Detection using Statistic Database check, DNS and who is check, verifying ASCII content of the URL and Visual similarity.- Residual Learning based Approach for Multi-class Classification of Skin Lesion using Deep Convolutional Neural Network.- Selected Deep Features and Multiclass SVM for Flower Image Classification.- Self-embedding and variable authentication approach for fragile image watermarking using SVD and DCT.- Semantic Segmentation of Kidney and Tumors using LinkNet Models.- Structural Health Monitoring of Water Pipes.- Telugu OCR Framework using a HMM and Transfer Learning Approach.- Temporal Anomaly Forged Scene Detection by Referring Video Discontinuity Features.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.