Gutierrez | The Monge—Ampère Equation | Buch | 978-0-8176-4177-1 | sack.de

Buch, Englisch, Band 44, 132 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 860 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Gutierrez

The Monge—Ampère Equation


2001
ISBN: 978-0-8176-4177-1
Verlag: Birkhäuser

Buch, Englisch, Band 44, 132 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 860 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-0-8176-4177-1
Verlag: Birkhäuser


The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.

Gutierrez The Monge—Ampère Equation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Generalized Solutions to Monge-Ampere Equations.- 1.1 The normal mapping.- 1.1.1 Properties of the normal mapping.- 1.2 Generalized solutions.- 1.3 Viscosity solutions.- 1.4 Maximum principles.- 1.4.1 Aleksandrov’s maximum principle.- 1.4.2 Aleksandrov-Bakelman-Pucci’s maximum principle.- 1.4.3 Comparison principle.- 1.5 The Dirichlet problem.- 1.6 The nonhomogeneous Dirichlet problem.- 1.7 Return to viscosity solutions.- 1.8 Ellipsoids of minimum volume.- 1.9 Notes.- 2 Uniformly Elliptic Equations in Nondivergence Form.- 2.1 Critical density estimates.- 2.2 Estimate of the distribution function of solutions.- 2.3 Harnack’s inequality.- 2.4 Notes.- 3 The Cross-sections of Monge-Ampere.- 3.1 Introduction.- 3.2 Preliminary results.- 3.3 Properties of the sections.- 3.3.1 The Monge-Ampère measures satisfying (3.1.1).- 3.3.2 The engulfing property of the sections.- 3.3.3 The size of normalized sections.- 3.4 Notes.- 4 Convex Solutions of det D2u = 1 in ?n.- 4.1 Pogorelov’s Lemma.- 4.2 Interior Hölder estimates of D2u.- 4.3 C?estimates of D2u.- 4.4 Notes.- 5 Regularity Theory for the Monge-Ampère Equation.- 5.1 Extremal points.- 5.2 A result on extremal points of zeroes of solutions to Monge-Ampère.- 5.3 A strict convexity result.- 5.4 C1,?regularity.- 5.5 Examples.- 5.6 Notes.- 6 W2pEstimates for the Monge-Ampere Equation.- 6.1 Approximation Theorem.- 6.2 Tangent paraboloids.- 6.3 Density estimates and power decay.- 6.4 LP estimates of second derivatives.- 6.5 Proof of the Covering Theorem 6.3.3.- 6.6 Regularity of the convex envelope.- 6.7 Notes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.