Haake | Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen | Buch | 978-3-658-37659-8 | sack.de

Buch, Deutsch, 90 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 152 g

Reihe: BestMasters

Haake

Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen


1. Auflage 2022
ISBN: 978-3-658-37659-8
Verlag: Springer

Buch, Deutsch, 90 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 152 g

Reihe: BestMasters

ISBN: 978-3-658-37659-8
Verlag: Springer


Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.

Haake Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Einleitung.- Kriminologische Theorien und Studien.- Theoretische Grundlagen des Maschinellen Lernens.- Datenvorverarbeitung.- Datenanalyse.- Zusammenfassung.


Der AutorDaniel Haake arbeitete zunächst im gehobenen Polizeidienst und studierte zusätzlich Informatik (B. Sc.) und anschließend berufsbegleitend Data Science (M. Sc.). Zurzeit ist er als Senior Data Scientist tätig. Für seine Masterarbeit wurde er mit dem Gerhard-Fürst-Preis 2020 des Statistischen Bundesamtes und beim Zukunftspreis Polizeiarbeit 2020 (2. Platz in der Kategorie Masterarbeiten) ausgezeichnet.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.