Buch, Deutsch, 90 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 152 g
Reihe: BestMasters
Buch, Deutsch, 90 Seiten, Paperback, Format (B × H): 148 mm x 210 mm, Gewicht: 152 g
Reihe: BestMasters
ISBN: 978-3-658-37659-8
Verlag: Springer
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsinformatik, SAP, IT-Management
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Wirtschaftsinformatik
- Rechtswissenschaften Öffentliches Recht Verwaltungsrecht Verwaltungspraxis Polizei
- Rechtswissenschaften Strafrecht Kriminologie, Strafverfolgung
Weitere Infos & Material
Einleitung.- Kriminologische Theorien und Studien.- Theoretische Grundlagen des Maschinellen Lernens.- Datenvorverarbeitung.- Datenanalyse.- Zusammenfassung.