Buch, Englisch, 580 Seiten, Book, Format (B × H): 157 mm x 233 mm, Gewicht: 8891 g
Buch, Englisch, 580 Seiten, Book, Format (B × H): 157 mm x 233 mm, Gewicht: 8891 g
ISBN: 978-3-662-45170-0
Verlag: Springer
Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. All chapters include practical exercises that highlight applications in different multivariate data analysis fields. All of the examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis.
The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features:
- A new chapter on Variable Selection (Lasso, SCAD and Elastic Net)
- All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de.
The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
Weitere Infos & Material
I Descriptive Techniques: Comparison of Batches.- II Multivariate Random Variables: A Short Excursion into Matrix Algebra.- Moving to Higher Dimensions.- Multivariate Distributions.- Theory of the Multinormal.- Theory of Estimation.- Hypothesis Testing.- III Multivariate Techniques: Regression Models.- Variable Selection.- Decomposition of Data Matrices by Factors.- Principal Components Analysis.- Factor Analysis.- Cluster Analysis.- Discriminant Analysis.- Correspondence Analysis.- Canonical Correlation Analysis.- Multidimensional Scaling.- Conjoint Measurement Analysis.- Applications in Finance.- Computationally Intensive Techniques.- IV Appendix: Symbols and Notations.- Data.