Häusler / Luschgy | Stable Convergence and Stable Limit Theorems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 74, 228 Seiten, eBook

Reihe: Probability Theory and Stochastic Modelling

Häusler / Luschgy Stable Convergence and Stable Limit Theorems


1. Auflage 2015
ISBN: 978-3-319-18329-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 74, 228 Seiten, eBook

Reihe: Probability Theory and Stochastic Modelling

ISBN: 978-3-319-18329-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.

Häusler / Luschgy Stable Convergence and Stable Limit Theorems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- 1.Weak Convergence of Markov Kernels.- 2.Stable Convergence.- 3.Applications.- 4.Stability of Limit Theorems.- 5.Stable Martingale Central Limit Theorems.- 6.Stable Functional Martingale Central Limit Theorems.- 7.A Stable Limit Theorem with Exponential Rate.- 8.Autoregression of Order One.- 9.Branching Processes.- A. Appendix.- B. Appendix.- Bibliography.


Erich Haeusler studied mathematics and physics at the University of Bochum from 1972 to 1978. He received his doctorate in mathematics in 1982 from the University of Munich. Since 1991 he has been Professor of Mathematics at the University of Giessen, where he teaches probability and mathematical statistics. Harald Luschgy studied mathematics, physics and mathematical logic at the Universities of Bonn and Münster. He received his doctorate in mathematics in 1976 from the University of Münster. He held visiting positions at the Universities of Hamburg, Bayreuth, Dortmund, Oldenburg, Passau and Wien and was a recipient of a Heisenberg grant from the DFG. Since 1995 he is Professor of Mathematics at the University of Trier where he teaches probability and mathematical statistics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.