Hamblin / Avci | Applications of Nanoscience in Photomedicine | E-Book | sack.de
E-Book

E-Book, Englisch, 220 Seiten

Reihe: Woodhead Publishing Series in Biomedicine

Hamblin / Avci Applications of Nanoscience in Photomedicine


1. Auflage 2015
ISBN: 978-1-908818-78-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 220 Seiten

Reihe: Woodhead Publishing Series in Biomedicine

ISBN: 978-1-908818-78-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Nanoscience has become one of the key growth areas in recent years. It can be integrated into imaging and therapy to increase the potential for novel applications in the field of photomedicine. In the past commercial applications of nanoscience have been limited to materials science research only, however, in recent years nanoparticles are rapidly being incorporated into industrial and consumer products. This is mainly due to the expansion of biomedical related research and the burgeoning field of nanomedicine. Applications of Nanoscience in Photomedicine covers a wide range of nanomaterials including nanoparticles used for drug delivery and other emerging fields such as optofluidics, imaging and SERS diagnostics. Introductory chapters are followed by a section largely concerned with imaging, and finally a section on nanoscience-enabled therapeutics. - Covers a comprehensive up-to-date information on nanoscience - Focuses on the combination of photomedicine with nanotechnology to enhance the diversity of applications - Pioneers in the field have written their respective chapters - Opens a plethora of possibilities for developing future nanomedicine - Easy to understand and yet intensive coverage chapter by chapter

Hamblin / Avci Applications of Nanoscience in Photomedicine jetzt bestellen!

Weitere Infos & Material


1;Cover
;1
2;Applications of Nanoscience in Photomedicine;4
3;Copyright;5
4;Contents;8
5;List of figures;16
6;List of tables;24
7;About the editors;26
8;1 Introduction;28
8.1;References;32
9;2 Wide-field nano-scale imaging on a chip;36
9.1;2.1 Introduction;36
9.2;2.2 Initial lower-resolution wide-field imaging approaches;38
9.3;2.3 Lensfree holographic on-chip microscopy;39
9.4;2.4 Improving resolution;42
9.5;2.5 Wide-field high-sensitivity imaging of single nanoparticles and viruses using self-assembled nanolenses;45
9.6;2.6 Evaporating continuous films;51
9.7;2.7 Conclusions;52
9.8;2.8 References;54
10;3 Photoacoustic imaging in nanomedicine
;58
10.1;3.1 Introduction;59
10.2;3.2 Fundamentals of photoacoustic imaging;59
10.3;3.3 Photoacoustic imaging systems;61
10.4;3.4 Exogenous contrasts for PAT;64
10.5;3.5 Conclusion;72
10.6;3.6 References;73
11;4 Chemical imaging of biological systems with nonlinear optical microscopy;76
11.1;4.1 Introduction;76
11.2;4.2 Absorption spectroscopy;79
11.3;4.3 Emission microscopy;86
11.4;4.4 Vibrational microscopy;90
11.5;4.5 Nonresonant nonlinear microscopy;95
11.6;4.6 Conclusion;97
11.7;4.7 References;97
12;5 Photoluminescent quantum dots in imaging, diagnostics and therapy;104
12.1;5.1 Introduction;104
12.2;5.2 Quantum dot electronic structure;105
12.3;5.3 Quantum dot bioconjugates;110
12.4;5.4 Multi-scale imaging applications with quantum dots;113
12.5;5.5 Therapeutic applications with quantum dots;120
12.6;5.6 Remaining challenges;122
12.7;5.7 Concluding remarks;124
12.8;5.8 References;125
12.9;5.9 Appendix – glossary of terms;129
13;6 Cell theranostics with plasmonic nanobubbles;132
13.1;6.1 Introduction;132
13.2;6.2 Basic properties of plasmonic nanobubbles;134
13.3;6.3 Diagnostic, therapeutic and theranostic properties of plasmonic nanobubbles;141
13.4;6.4 References;154
14;7 Near-infrared
fluorescence
nanoparticle-based
probes:
application to in vivo imaging
of cancer
;158
14.1;7.1 Introduction;159
14.2;7.2 Development of near-infrared fluorescence nanoprobes;160
14.3;7.3 Near-infrared fluorescence nanoprobes for cancer molecular imaging;169
14.4;7.4 Conclusion and perspectives;173
14.5;7.5 References;174
15;8 Optofluidics;180
15.1;8.1 Introduction;180
15.2;8.2 Optofluidic structures;183
15.3;8.3 Optofluidic detection methods;183
15.4;8.4 Optofluidic preconcentration, trapping, and manipulation of nanoparticles;189
15.5;8.5 Optofluidic control of flow;191
15.6;8.6 References;192
16;9 Optofluidic lab-on a-chip devices for photomedicine applications;196
16.1;9.1 Introduction;196
16.2;9.2 Detection of human cells;199
16.3;9.3 Detection of nucleic acids;205
16.4;9.4 Conclusion;208
16.5;9.5 References;209
17;10 Optogenetics: lights, camera, action! A ray of light, a shadow unmasked;212
17.1;10.1 Introduction;212
17.2;10.2 Overview – from birth to cradle;214
17.3;10.3 Optogenetics;214
17.4;10.4 Light delivery;222
17.5;10.5 Applications;223
17.6;10.6 Challenges;226
17.7;10.7 Conclusion;227
17.8;10.8 References;227
18;11 Photonic control of axonal guidance;232
18.1;11.1 Introduction;232
18.2;11.2 Optical tweezers for axonal manipulation;234
18.3;11.3 Optically-driven micro-motor for axonal guidance;237
18.4;11.4 Neuronal beacon for axonal navigation;241
18.5;11.5 Future outlook and conclusions;243
18.6;11.6 References;244
19;12 Gold nanorods in photomedicine;248
19.1;12.1 Introduction;248
19.2;12.2 Therapeutic applications;252
19.3;12.3 Therapeutic delivery;255
19.4;12.4 Probing diseases;260
19.5;12.5 Conclusion;267
19.6;12.6 References;267
20;13 Gold nanoparticles and their applications in photomedicine, diagnosis and therapy;276
20.1;13.1 Introduction;276
20.2;13.2 Synthesis and functionalization of gold nanoparticles;277
20.3;13.3 Photomedicine;278
20.4;13.4 Gold nanoparticles in photothermal therapy;283
20.5;13.5 Use of gold nanoparticles in rheumatoid arthritis;289
20.6;13.6 Conclusion;290
20.7;13.7 References;291
21;14 Targeted gold nanoshells;294
21.1;14.1 Introduction;295
21.2;14.2 Gold-based nanoshells;296
21.3;14.3 Passive targeting gold nanospheres;297
21.4;14.4 Active-targeting ligands;298
21.5;14.5 Outlook;311
21.6;14.6 References;312
22;15 Nanotubeand graphene-based photomedicine for cancer therapeutics;318
22.1;15.1 Introduction;319
22.2;15.2 Nanotechnology;319
22.3;15.3 Carbon nanotubes;320
22.4;15.4 Carbon nanotubes for photothermal therapy;325
22.5;15.5 Combination photothermal therapy and chemotherapy based on carbon nanotubes;337
22.6;15.6 Rise of graphene;339
22.7;15.7 Graphene-based photomedicine;341
22.8;15.8 Photothermally enhanced photodynamic therapy of cancer;345
22.9;15.9 Combination of photothermal and chemotherapy based on graphene;348
22.10;15.10 Conclusions and outlook;349
22.11;15.11 References;351
23;16 Nanomaterial-assisted light-induced poration and transfection of mammalian cells;358
23.1;16.1 Introduction;358
23.2;16.2 Transfection of mammalian cells;359
23.3;16.3 Combining nanomaterials and light for cell transfection: principles, functionalization and toxicity;367
23.4;16.4 Examples of nanomaterial-assisted light-induced optoporation and transfection of cells;381
23.5;16.5 Conclusions;395
23.6;16.6 References;396
24;17 Upconverting nanoparticle-based multi-functional nanoplatform for enhanced photodynamic therapy: promises and perils;404
24.1;17.1 Introduction;405
24.2;17.2 History;407
24.3;17.3 Advantages;407
24.4;17.4 Upconverting nanoparticles;409
24.5;17.5 Upconverting nanoparticles in photodynamic therapy;412
24.6;17.6 Challenges;413
24.7;17.7 Future;415
24.8;17.8 References;416
25;18 Light-controlled nanoparticulate drug delivery systems;420
25.1;18.1 Introduction;420
25.2;18.2 Drug delivery systems based on photocleavage of molecules;423
25.3;18.3 Drug delivery systems controlled by triggered photoisomerization;427
25.4;18.4 Nanoparticles triggered by photo-oxidation reactions;431
25.5;18.5 Drug delivery nanoparticles employing photopolymerization;432
25.6;18.6 Drug delivery systems based on metal nanoparticles;433
25.7;18.7 Phototargeted nanoparticles;435
25.8;18.8 Conclusions;437
25.9;18.9 References;437
26;19 Light-activated antimicrobial nanoparticles;442
26.1;19.1 Antimicrobial PDT;442
26.2;19.2 Photodynamic therapy and nanoparticles;443
26.3;19.3 Conclusions and future trends;450
26.4;19.4 References;450
27;20 Silica-based nanostructured materials for biomedical applications;456
27.1;20.1 Silica nanoparticles for photomedicine;456
27.2;20.2 Silica nanomaterials for photodynamic therapy;463
27.3;20.3 Incorporation of antioxidants in silica nanoparticles;465
27.4;20.4 Silica encapsulation of ultraviolet filters;470
27.5;20.5 Conclusions and outlook;471
27.6;20.6 References;472
28;21 Silica-based nanoparticles for photodynamic therapy;476
28.1;21.1 Introduction;476
28.2;21.2 Noncovalent encapsulation of photosensitizers in silica nanoparticles;477
28.3;21.3 Covalent encapsulation of photosensitizer in silica nanoparticles;483
28.4;21.4 Nanoparticles partly made with silica;486
28.5;21.5 Conclusion;487
28.6;21.6 References;487
29;22 Supramolecular drug delivery platforms in photodynamic therapy;492
29.1;22.1 Introduction to photodynamic therapy photophysical chemistry;493
29.2;22.2 Ideal properties of photosensitizers and the photosensitizer dilemma;494
29.3;22.3 Supramolecular interaction as a solution to photosensitizer issues, overview of supramolecular processes;496
29.4;22.4 Liposomal systems;497
29.5;22.5 Micelles, polymersomes, reverse micelles, and micellar-like systems;501
29.6;22.6 Miscellaneous supramolecular systems;504
29.7;22.7 Conclusion and future outlook;507
29.8;22.8 References;507
30;23 Advancing photodynamic therapy with biochemically tuned liposomal nanotechnologies;514
30.1;23.1 Introduction;515
30.2;23.2 Photophysical and photochemical properties of liposomal photosensitizers;516
30.3;23.3 Applications: liposomes for photodynamic therapy;520
30.4;23.4 Applications: theranostic (or image-guided photodynamic therapy with liposomes;525
30.5;23.5 Photosensitizer release mechanisms;527
30.6;23.6 Future directions and perspective;530
30.7;23.7 References;531
31;24 Porphyrin nanoparticles in photomedicine;538
31.1;24.1 Porphyrins;538
31.2;24.2 Nanoparticles with porphyrin components;540
31.3;24.3 Porphyrin self-assembled nanoparticles;544
31.4;24.4 Conclusion;549
31.5;24.5 References;550
32;Index;554


List of figures
2.1 Lensfree holographic on-chip microscopy set-up 13 2.2 Optimized lensfree resolution 17 2.3 Nanolens preparation and morphology 20 2.4 Optical simulations of nanolens performance 22 2.5 Wide-field nanoparticle and virus detection using a complementary metal-oxide-semiconductor sensor 23 2.6 Ultra-large field-of-view imaging of nanoparticles using a charge-coupled device sensor 24 2.7 Wide-field nanoparticle and virus imaging using evaporating continuous wetting films 26 3.1 Basic principles of photoacoustic imaging 33 3.2 Different types of photoacoustic computed tomography systems 35 3.3 Photoacoustic microscopy systems 36 3.4 Experimental and theoretical localized surface plasmon resonance peaks of gold nanocages 38 3.5 In vivo molecular photoacoustic images of B16 melanoma in a nude mouse 39 3.6 Biodistribution study of gold nanocages in mice 40 3.7 Optical spectrum of 5-nm gold nanoparticles and Au-Cu2–xSe heterogeneous nanoparticles 42 3.8 Pre- and post-activated conventional microbubbles and MB2 44 3.9 In vivo photoacoustic monitoring of the photodynamic therapy efficacy using gold nanocage–2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide 45 4.1 Nonlinear processes commonly used in nonlinear optical microscopy 52 4.2 Pump-probe imaging of astaxanthin, a tissue chromophore in shrimps 56 4.3 Stimulated emission microscopy in microvasculature imaging 58 4.4 Emission microscopy. Two-photon fluorescence intensity image of a normal skin excited at wavelength of 780 nm 61 4.5 Hyperspectral imaging of cholesterol crystal 66 4.6 Stimulated Raman scattering imaging of newly synthesized proteins 67 4.7 Histopathology stimulated Raman scattering mosaic images of healthy human skin and superficial squamous cell carcinoma tissues ex vivo 68 5.1 Size-dependent photoluminescence of quantum dots 80 5.2 Relation between emission maxima and sizes of quantum dots of various compositions 82 5.3 Synthesis, solubilization and functionalization of colloidal quantum dots 84 5.4 Retrograde transport of epidermal growth factor-conjugated quantum dots on filopodia 88 5.5 Multi-spectral imaging with quantum dots 89 5.6 In vivo tumor targeting and image-guided surgery 91 6.1 Principle of plasmonic nanobubble generation 107 6.2 Methods for detecting plasmonic nanobubbles in liquid 108 6.3 Threshold nature of the plasmonic nanobubble generation and lifetime and parameters of plasmonic nanobubbles around gold nanoparticle clusters 109 6.4 Interaction of nanoparticle with target and non-target cells 110 6.5 Optical scattering image of gold nanoparticles and plasmonic nanobubble in coculture of cancer and normal cells targeted with gold nanoparticle-C225 111 6.6 Cell population-averaged levels of optical scattering signals obtained for individual target and non-target cells in six cell models 112 6.7 Photothermal microscope for animal studies (inset, optical fiber probe); acoustic responses and amplitudes in tumor and adjacent muscle 113 6.8 Photothermal efficacy of gold solid spheres in water and photothermal responses of plasmonic nanobubbles 115 6.9 Principle of plasmonic nanobubble imaging of living cells and optical and pulsed scattering time-resolved images 116 6.10 Superficial mode of plasmonic nanobubble generation and detection 117 6.11 Therapeutic mechanisms of plasmonic nanobubbles 118 6.12 Human plaque model 119 6.13 Calcein fluorescence of prostate cancer and stromal cells before and after exposure to laser pulses 120 6.14 Principle of nano-injection of extracellular molecular cargo 122 6.15 Principles of administration of gold nanoparticles and encapsulated drugs 124 6.16 Comparison of clonogenicity of cancer and normal cells treated with standard chemoradiation therapy and its combination with plasmonic nanobubbles 125 6.17 Bright field and fluorescent microscopy images of a coculture of normal and squamous cell carcinoma cells 126 6.18 Plasmonic nanobubbles cell theranostic with multi-stage tunable PNB 127 7.1 Near-infrared nanoprobes include dye-loaded nanoparticles, quantum dots, carbon nanotubes, gold clusters and up-conversion nanoparticles 134 7.2 Structure and synthesis of QD800-affibody and IO-affibody conjugates 140 7.3 Dual fluorochrome ratio imaging of implanted 9 L green fluorescent protein-expressing gliosarcoma tumors 141 7.4 Characterization of the indocyanine green (ICG) dye-enhanced single-walled carbon nanotube (SWNT) and SWNT-ICG-arginine-glycine-aspartic acid (RCG) tumor-targeting in living mice 145 8.1 Optofluidics and its applications 154 8.2 Various optofluidic structures 155 8.3 Fluorescence-based detection carried out near a solid surface 157 8.4 Molecular beacon and fluorescent protein resonance energy transfer pair linked via a peptide 158 8.5 Principle of label-free detection and example of the label-free sensing signal 159 8.6 Transition from fluorescence-based detection to laser intra-cavity detection 160 8.7 Sensitive detection of the Holliday junction conformational change and of peptide length change 161 8.8 Various methods to trap and manipulate nanoparticles and biomolecules 163 8.9 Various implementations of optofluidic control of flow 164 9.1 Microfluidic system for circulating tumor cell capture and detection 173 9.2 Schematics of a micro-fluorescence-activated cell sorting system and a label-free optofluidic neutrophil counter 175 9.3 Schematic of dark-field scattering image using a cell-phone compatible CMOS sensor 177 10.1 Neuron firing an action potential upon illumination with a beam of blue light 186 10.2 Optogenetic classification chart 188 10.3 Microbial (Type I) opsins – Channelrhodopsins depolarize cells and stimulate neurons upon illumination with blue light 190 10.4 Summary of ChR2, VChR1 and NpHR (Deisseroth, 2010) 191 10.5 Diagram summarizing kinetics and properties optogenetic tool variants 193 10.6 Diagram illustrating OptoXR 194 10.7 Diagram of Opto-a1AR and Opto-ß2AR and Rh-CT(5-HT-1A) 194 11.1 Growth cone at the tip of a retinal ganglion cell axon 206 11.2 Optical pulling of filopodia by use of attached microparticle as handle 207 11.3 Use of line optical tweezers for bringing filopodia of one growth cone in close proximity to another growth cone 208 11.4 Fiber-optic laser microbeam for manipulation of axonal growth cone 209 11.5 Bending of filopodia by optically forcing with a microparticle as handle 210 11.6 Laser spanner for generating microfluidic flow for...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.