Han / Kamber | Data Mining, Southeast Asia Edition | Buch | 978-0-12-373905-6 | sack.de

Buch, Englisch, 800 Seiten, Format (B × H): 191 mm x 234 mm, Gewicht: 1450 g

Han / Kamber

Data Mining, Southeast Asia Edition

Concepts and Techniques
2. Auflage 2006
ISBN: 978-0-12-373905-6
Verlag: William Andrew Publishing

Concepts and Techniques

Buch, Englisch, 800 Seiten, Format (B × H): 191 mm x 234 mm, Gewicht: 1450 g

ISBN: 978-0-12-373905-6
Verlag: William Andrew Publishing


Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.

Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.

Han / Kamber Data Mining, Southeast Asia Edition jetzt bestellen!

Zielgruppe


database R&D professionals, data mining professionals; undergraduate and graduate students who will want to incorporate data mining as part of their knowledge base and expertise.

Weitere Infos & Material


1. Introduction
2. Data Preprocessing
3. Data Warehouse and OLAP Technology: An Overview
4. Data Cube Computation and Data Generalization
5. Mining Frequent Patterns, Associations, and Correlations
6. Classification and Prediction
7. Cluster Analysis
8. Mining Stream, Time-Series, and Sequence Data
9 Graph Mining, Social Network Analysis, and Multi-Relational Data Mining
10. Mining Object, Spatial, Multimedia, Text, and Web Data
11. Applications and Trends in Data Mining
Appendix A: An Introduction to Microsoft's OLE DB for Data Mining


Kamber, Micheline
Micheline Kamber is a researcher with a passion for writing in easy-to-understand terms. She has a master's degree in computer science (specializing in artificial intelligence) from Concordia University, Canada.

Han, Jiawei
Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.

Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.


Kamber, Micheline
Micheline Kamber is a researcher with a passion for writing in easy-to-understand terms. She has a master's degree in computer science (specializing in artificial intelligence) from Concordia University, Canada.

Han, Jiawei
Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.

Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.