Hand / Kok / Berthold | Advances in Intelligent Data Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1642, 544 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Hand / Kok / Berthold Advances in Intelligent Data Analysis

Third International Symposium, IDA-99 Amsterdam, The Netherlands, August 9-11, 1999 Proceedings
Erscheinungsjahr 2003
ISBN: 978-3-540-48412-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Third International Symposium, IDA-99 Amsterdam, The Netherlands, August 9-11, 1999 Proceedings

E-Book, Englisch, Band 1642, 544 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-48412-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Hand / Kok / Berthold Advances in Intelligent Data Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Learning.- From Theoretical Learnability to Statistical Measures of the Learnable.- ALM: A Methodology for Designing Accurate Linguistic Models for Intelligent Data Analysis.- A “Top-Down and Prune” Induction Scheme for Constrained Decision Committees.- Mining Clusters with Association Rules.- Evolutionary Computation to Search for Strongly Correlated Variables in High-Dimensional Time-Series.- The Biases of Decision Tree Pruning Strategies.- Feature Selection as Retrospective Pruning in Hierarchical Clustering.- Discriminative Power of Input Features in a Fuzzy Model.- Learning Elements of Representations for Redescribing Robot Experiences.- “Seeing“ Objects in Spatial Datasets.- Intelligent Monitoring Method Using Time Varying Binomial Distribution Models for Pseudo-Periodic Communication Traffic.- Visualization.- Monitoring Human Information Processing via Intelligent Data Analysis of EEG Recordings.- Knowledge-Based Visualization to Support Spatial Data Mining.- Probabilistic Topic Maps: Navigating through Large Text Collections.- 3D Grand Tour for Multidimensional Data and Clusters.- Classification and Clustering.- A Decision Tree Algorithm for Ordinal Classification.- Discovering Dynamics Using Bayesian Clustering.- Integrating Declarative Knowledge in Hierarchical Clustering Tasks.- Nonparametric Linear Discriminant Analysis by Recursive Optimization with Random Initialization.- Supervised Classification Problems: How to Be Both Judge and Jury.- Temporal Pattern Generation Using Hidden Markov Model Based Unsupervised Classification.- Exploiting Similarity for Supporting Data Analysis and Problem Solving.- Multiple Prototype Model for Fuzzy Clustering.- A Comparison of Genetic Programming Variants for Data Classification.- Fuzzy Clustering Based onModified Distance Measures.- Building Classes in Object-Based Languages by Automatic Clustering.- Integration.- Adjusted Estimation for the Combination of Classifiers.- Data-Driven Theory Refinement Using KBDistAl.- Reasoning about Input-Output Modeling of Dynamical Systems.- Undoing Statistical Advice.- A Method for Temporal Knowledge Conversion.- Applications.- Intrusion Detection through Behavioral Data.- Bayesian Neural Network Learning for Prediction in the Australian Dairy Industry.- Exploiting Sample-Data Distributions to Reduce the Cost of Nearest-Neighbor Searches with Kd-Trees.- Pump Failure Detection Using Support Vector Data Descriptions.- Data Mining for the Detection of Turning Points in Financial Time Series.- Computer-Assisted Classification of Legal Abstracts.- Sequential Control Logic Inferring Method from Observed Plant I/O Data.- Evaluating an Eye Screening Test.- Application of Rough Sets Algorithms to Prediction of Aircraft Component Failure.- Media Mining.- Exploiting Structural Information for Text Classification on the WWW.- Multi-agent Web Information Retrieval: Neural Network Based Approach.- Adaptive Information Filtering Algorithms.- A Conceptual Graph Approach for Video Data Representation and Retrieval.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.