Buch, Englisch, 236 Seiten, Format (B × H): 175 mm x 252 mm, Gewicht: 712 g
Modeling Failure in Materials
Buch, Englisch, 236 Seiten, Format (B × H): 175 mm x 252 mm, Gewicht: 712 g
Reihe: Statistical Physics of Fracture and Breakdown
ISBN: 978-3-527-41214-3
Verlag: WILEY-VCH
Gathering research from physics, mechanical engineering, and statistics in a single resource for the first time, this text presents the background to the model, its theoretical basis, and applications ranging from materials science to earth science.
The authors start by explaining why disorder is important for fracture and then go on to introduce the fiber bundle model, backed by various different applications. Appendices present the necessary mathematical, computational and statistical background required.
The structure of the book allows the reader to skip some material that is too specialized, making this topic accessible to the engineering, mechanics and materials science communities, in addition to providing further reading for graduate students in statistical physics.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface XIII
1 The Fiber Bundle Model 1
1.1 Rivets VersusWelding 1
1.1.1 What Are Models Good For? 3
1.2 Fracture and Failure: A Short Summary 4
1.3 The Fiber Bundle Model in Statistics 5
1.4 The Fiber Bundle Model in Physics 6
1.5 The Fiber Bundle Model in Materials Science 8
1.6 Structure of the Book 8
2 Average Properties 11
2.1 Equal Load Sharing versus Local Load Sharing 11
2.2 Strain-Controlled versus Force-Controlled Experiments 12
2.3 The Critical Strength 16
2.4 Fiber Mixtures 22
2.5 Non-Hookean Forces 24
2.5.1 Fibers with Random Slacks 24
2.5.2 Elastic–Plastic Model 25
3 Fluctuation Effects 27
3.1 Range of Force Fluctuations 28
3.2 The Maximum Bundle Strength 30
3.3 Avalanches 32
3.3.1 The Burst Distribution 33
3.3.1.1 The Forward Condition 35
3.3.1.2 The Backward Condition 36
3.3.1.3 Total Number and Average Size of Bursts 37
3.3.2 Asymptotic Burst Distribution: 5/2 Law 40
3.3.2.1 Asymptotic Burst Distribution: Nongeneric Cases 42
3.3.3 Inclusive Bursts 45
3.3.4 Forward Bursts 47
3.3.5 Avalanches as RandomWalks 49
3.3.5.1 The Exact RandomWalk 49
3.3.5.2 Asymptotic Burst Distribution via RandomWalks 51
3.3.6 Energy Release 53
3.3.6.1 High-Energy Asymptotics 53
3.3.6.2 Low-Energy Behavior 55
3.3.7 Failure Avalanches for Stepwise Load Increase 57
3.3.7.1 UniformThreshold Distribution 58
3.3.7.2 General Threshold Distribution 59
4 Local and Intermediate Load Sharing 63
4.1 The Local-Load-Sharing Model 64
4.1.1 Redistribution of Forces 66
4.1.2 Determining the Failure Sequence 67
4.1.3 Bundle Strength 68
4.1.4 Failure of First and Second Fibers 69
4.1.4.1 Other Threshold Distributions 75
4.1.4.2 Localization 76
4.1.5 Hole Size Distribution 78
4.1.5.1 De