Heidergott / Olsder / van der Woude | Max Plus at Work | E-Book | sack.de
E-Book

E-Book, Englisch, Band 48, 224 Seiten

Reihe: Princeton Series in Applied Mathematics

Heidergott / Olsder / van der Woude Max Plus at Work

Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications
Erscheinungsjahr 2014
ISBN: 978-1-4008-6523-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications

E-Book, Englisch, Band 48, 224 Seiten

Reihe: Princeton Series in Applied Mathematics

ISBN: 978-1-4008-6523-9
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



No detailed description available for "Max Plus at Work".

Heidergott / Olsder / van der Woude Max Plus at Work jetzt bestellen!

Weitere Infos & Material


Preface ix

Chapter 0. Prolegomenon 1

0.1 Introductory Example 1

0.2 On the Notation 3

0.3 On Eigenvalues and Eigenvectors 6

0.4 Some Modeling Issues 7

0.5 Counter and Dater Descriptions 8

0.6 Exercises 9

0.7 Notes 10

PART I. MAX-PLUS ALGEBRA 11

Chapter 1. Max-Plus Algebra 13

1.1 Basic Concepts and Definitions 13

1.2 Vectors and Matrices 17

1.3 A First Max-Plus Model 20

1.4 The Projective Space 24

1.5 Exercises 25

1.6 Notes 26

Chapter 2. Spectral Theory 28

2.1 Matrices and Graphs 28

2.2 Eigenvalues and Eigenvectors 36

2.3 Solving Linear Equations 42

2.4 Exercises 44

2.5 Notes 45

Chapter 3. Periodic Behavior and the Cycle-Time Vector 47

3.1 Cyclicity and Transient Time 48

3.2 The Cycle-Time Vector: Preliminary Results 56

3.3 The Cycle-Time Vector: General Results 62

3.4 A Sunflower Bouquet 67

3.5 Exercises 69

3.6 Notes 70

Chapter 4. Asymptotic Qualitative Behavior 72

4.1 Periodic Regimes 72

4.2 Characterization of the Eigenspace 74

4.3 Primitive Matrices 79

4.4 Limits in the Projective Space 80

4.5 Higher-Order Recurrence Relations 82

4.6 Exercises 83

4.7 Notes 84

Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices 85

5.1 Karp's Algorithm 85

5.2 The Power Algorithm 91

5.3 Exercises 94

5.4 Notes 94

Chapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices 95

6.1 Howard's Algorithm 96

6.2 Examples 102

6.3 Howard's Algorithm for Higher-Order Models 108

6.4 Exercises 110

6.5 Notes 111

PART II. TOOLS AND APPLICATIONS 113

Chapter 7. Petri Nets 115

7.1 Petri Nets and Event Graphs 115

7.2 The Autonomous Case 119

7.3 The Nonautonomous Case 122

7.4 Exercises 124

7.5 Notes 125

Chapter 8. The Dutch Railway System Captured in a Max-Plus Model 126

8.1 The Line System 126

8.2 Construction of the Timed Event Graph 130

8.3 State Space Description 132

8.4 Application of Howard's Algorithm 137

8.5 Exercises 138

8.6 Notes 139

Chapter 9. Delays, Stability Measures, and Results for the Whole Network 140

9.1 Propagation of Delays 140

9.2 Results for the Whole Dutch Intercity Network 145

9.3 Other Modeling Issues 148

9.4 Exercises 151

9.5 Notes 152

Chapter 10. Capacity Assessment 153

10.1 Capacity Assessment with Different Types of Trains 153

10.2 Capacity Assessment for a Series of Tunnels 154

10.3 Exercises 158

10.4 Notes 159

PART III. EXTENSIONS 161

Chapter 11. Stochastic Max-Plus Systems 163

11.1 Basic Definitions and Examples 164

11.2 The Subadditive Ergodic Theorem 167

11.3 Matrices with Fixed Support 171

11.4 Beyond Fixed Support 174

11.5 Exercises 175

11.6 Notes 176

Chapter 12. Min-Max-Plus Systems and Beyond 177

12.1 Min-Max-Plus Systems 177

12.2 Links to Other Mathematical Areas 187

12.3 Exercises 189

12.4 Notes 190

Chapter 13. Continuous and Synchronized Flows on Networks 191

13.1 Dater and Counter Descriptions 191

13.2 Continuous Flows without Capacity Constraints 192

13.3 Continuous Flows with Capacity Constraints 197

13.4 Exercises 199

13.5 Notes 200

Bibliography 201

List of Symbols 206

Index 209


Bernd Heidergott is Associate Professor of Mathematics and Statistics at Vrije Universiteit, Amsterdam. He is a research fellow of the Tinbergen Institute. Geert Jan Olsder is Professor of Mathematical System Theory and Deputy Vice-Chancellor at Delft University of Technology. Jacob van der Woude is Associate Professor of Mathematical System Theory at Delft University of Technology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.