Heil | Introduction to Real Analysis | Buch | 978-3-030-26901-2 | sack.de

Buch, Englisch, Band 280, 386 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 793 g

Reihe: Graduate Texts in Mathematics

Heil

Introduction to Real Analysis


1. Auflage 2019
ISBN: 978-3-030-26901-2
Verlag: Springer International Publishing

Buch, Englisch, Band 280, 386 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 793 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-3-030-26901-2
Verlag: Springer International Publishing


Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject.

The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more.

Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.

Heil Introduction to Real Analysis jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preliminaries.- 1. Metric and Normed Spaces.- 2. Lebesgue Measure.- 3. Measurable Functions.- 4. The Lebesgue Integral.- 5. Differentiation.- 6. Absolute Continuity and the Fundamental Theorem of Calculus.- 7. The Lp Spaces.- 8. Hilbert Spaces and L^2(E).- 9. Convolution and the Fourier Transform.


Christopher Heil is Professor of Mathematics at the Georgia Institute of Technology in Atlanta, Georgia. His research interests include harmonic analysis, time-frequency analysis, image processing, and more.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.