E-Book, Englisch, 512 Seiten, Web PDF
Hemsley / Poole The Evolution of Plant Physiology
1. Auflage 2004
ISBN: 978-0-08-047272-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 512 Seiten, Web PDF
ISBN: 978-0-08-047272-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Coupled with biomechanical data, organic geochemistry and cladistic analyses utilizing abundant genetic data, scientific studies are revealing new facets of how plants have evolved over time. This collection of papers examines these early stages of plant physiology evolution by describing the initial physiological adaptations necessary for survival as upright structures in a dry, terrestrial environment. The Evolution of Plant Physiology also encompasses physiology in its broadest sense to include biochemistry, histology, mechanics, development, growth, reproduction and with an emphasis on the interplay between physiology, development and plant evolution. - Contributions from leading neo- and palaeo-botanists from the Linnean Society - Focus on how evolution shaped photosynthesis, respiration, reproduction and metabolism. - Coverage of the effects of specific evolutionary forces -- variations in water and nutrient availability, grazing pressure, and other environmental variables
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Contents;6
3;List of contributors;8
4;Preface;12
4.1;The origins of plant physiology;12
4.2;Evolution of plant physiology from the molecular level;12
4.3;Evolution of anatomical physiology;13
4.4;Evolution of environmental and ecosystem physiology;13
5;Part I The Origins of Plant Physiology;16
5.1;1 Turning the land green: inferring photosynthetic physiology and diffusive limitations in early bryophytes;18
5.1.1;Introduction;18
5.1.2;Phylogeny of bryophytes;19
5.1.3;Rubisco: a discriminating marker for photosynthetic metabolism;20
5.1.4;Life on land: caught in a compromising situation;23
5.1.5;Why is there no biophysical CCM in terrestrial plants other than hornworts?;23
5.1.6;Comparative physiology of bryophyte photosynthesis;24
5.1.7;Conclusions;27
5.1.8;Acknowledgements;28
5.1.9;References;28
5.2;2 Physiological evolution of lower embryophytes: adaptations to the terrestrial environment;32
5.2.1;Introduction;32
5.2.2;The ancestors of embryophytes;33
5.2.3;Water, carbon dioxide and energetics of land plants;34
5.2.4;Desiccation tolerance, desiccation intolerance, poikilohydry and homoiohydry;37
5.2.4.1;Poikilohydry of algae and early-evolving embryophytes;37
5.2.5;Desiccation tolerance and intolerance;42
5.2.6;Evolution of homoiohydry;43
5.2.7;History of physiological interpretations of early embryophytes;46
5.2.7.1;Introduction;46
5.2.7.2;Transpiration rate and endodermal function in regulating nutrient supply to the shoot;48
5.2.7.3;Mechanism of endohydric water movement;49
5.2.7.4;Role of stomata in determining the rate of photosynthesis and the water cost of photosynthesis;50
5.2.8;Conclusions;52
5.2.9;Acknowledgements;52
5.2.10;References;53
5.3;3 Origin, function and development of the spore wall in early land plants;58
5.3.1;Introduction;58
5.3.2;Origin of the spore wall;59
5.3.3;Function of the spore wall;60
5.3.4;Spore wall development;61
5.3.4.1;Basic mechanisms of spore wall formation;61
5.3.4.2;Substructural organization of spore walls;63
5.3.4.3;Spore wall formation in extant plants;63
5.3.4.4;Spore wall formation in early land plants;67
5.3.4.5;Molecular genetics of spore wall development;70
5.3.5;Conclusions;74
5.3.6;Acknowledgements;75
5.3.7;References;75
6;Part II Evolution of Plant Physiology from the Molecular Level;80
6.1;4 The evolution of plant biochemistry and the implications for physiology;82
6.1.1;Introduction;83
6.1.2;Molecular evolution, biochemical evolution and metabolic evolution – hierarchical terms;83
6.1.3;Metabolic evolution – what determines whether a new enzyme is retained?;84
6.1.3.1;Biomolecular activity – the evolution of ‘secondary metabolism’;84
6.1.3.2;Molecules retained because of their physicochemical properties;85
6.1.3.3;Primary metabolism – canalized metabolism, each step depending on other pre-existing metabolic capabilities;86
6.1.4;Selection for different molecular properties has consequences for metabolic evolution;86
6.1.5;Biochemical evolution and physiology;87
6.1.6;The interaction of plants with other organisms;88
6.1.6.1;The human experience;88
6.1.6.2;Plant/microbe and plant/insect interactions;89
6.1.7;The evolution of regulatory systems for secondary metabolism;91
6.1.7.1;A speculative scenario for the evolution of the control of pathways leading to compounds retained because they possess biomolecular activity;92
6.1.8;Signalling molecules within plants;93
6.1.8.1;The link between secondary metabolism and hormonal control;93
6.1.8.1.1;Are plant hormones ‘secondary metabolites’?;93
6.1.8.1.2;Gibberellin synthesis – generating diversity?;95
6.1.8.1.3;Plant hormone degradation – another role?;96
6.1.9;Summary;96
6.1.10;Acknowledgements;97
6.1.11;References;97
6.2;5 Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian–Early Devonian radiation of land plants?;100
6.2.1;Introduction;100
6.2.2;Brief overview of Cambrian radiation of bilateral animals;101
6.2.2.1;Rapid diversification of animal phyla;101
6.2.2.2;Characteristic body plan of each phylum;101
6.2.2.3;Early establishment of body plan;102
6.2.2.4;Altered expression of embryonic genes resulting in new body plans;102
6.2.3;Silurian–Devonian radiation of land plants;103
6.2.3.1;Did early land plants diverge in a rapid evolutionary radiation?;103
6.2.3.2;Are the characteristic body plans of land plants established during embryonic development?;105
6.2.3.3;What developmental mechanisms act to generate plant body plans?;111
6.2.3.4;Did major changes in auxin regulation occur prior to the Silurian–Devonian radiation?;114
6.2.4;Conclusions;116
6.2.5;Acknowledgements;117
6.2.6;References;117
6.3;6 Aquaporins: structure, function and phylogenetic analysis;124
6.3.1;Introduction;124
6.3.2;Transport of water across cell membranes;125
6.3.3;Discovery of aquaporins and the MIP-family;126
6.3.4;Structure and function of MIPs;127
6.3.5;MIPs of bacteria, fungi and animals;128
6.3.6;Plant MIPs;130
6.3.7;Phylogenetic analysis;132
6.3.8;Acknowledgement;133
6.3.9;References;133
6.4;7 Evolutionary origin of the ethylene biosynthesis pathway in angiosperms;136
6.4.1;Introduction;136
6.4.2;Evolution of the angiosperm ethylene biosynthesis pathway;137
6.4.2.1;Early responses to stress conditions;137
6.4.2.2;The role of ACC;138
6.4.2.3;The acquisition of ACC oxidase;138
6.4.3;How ACC oxidase originated;140
6.4.3.1;ACC oxidase as a 2-oxoacid-dependent dioxygenase;140
6.4.3.2;Molecular changes;141
6.4.3.3;The enzyme ancestral to ACC oxidase;143
6.4.4;When did the ethylene biosynthesis pathway arise?;143
6.4.4.1;Palaeoclimatic considerations;143
6.4.5;Acknowledgements;144
6.4.6;References;145
6.5;8 Structural biomacromolecules in plants: what can be learnt from the fossil record?;148
6.5.1;Introduction;148
6.5.2;Characterizing resistant biomacromolecules;149
6.5.3;Resistant biomacromolecules in outer coverings;151
6.5.3.1;Algal cell walls;151
6.5.3.2;Pollen and spore walls;153
6.5.3.3;Higher land plant leaf and stem cuticles;158
6.5.4;Inner structural entities;161
6.5.4.1;Water-conducting and strengthening tissues;161
6.5.5;Conclusions;165
6.5.6;References;165
6.6;9 Early land plant adaptations to terrestrial stress: a focus on phenolics;170
6.6.1;Introduction;170
6.6.2;Materials and techniques;171
6.6.2.1;Trait mapping;171
6.6.2.2;Thioacidolysis;171
6.6.2.3;Qualitative and quantitative assessment of acid hydrolysis-resistant biomass;172
6.6.2.4;Fluorescence, scanning and transmission electron microscopy;173
6.6.2.5;Global estimates of early Palaeozoic resistant and sequestered carbon;173
6.6.3;Results;174
6.6.4;Discussion;177
6.6.5;Conclusions;180
6.6.6;Acknowledgements;180
6.6.7;References;180
6.6.8;Appendix 9.1 Physiological traits related to early stress adaptation in land plants;183
6.7;10 Plant cuticles: multifunctional interfaces between plant and environment;186
6.7.1;Introduction;186
6.7.2;The multifunctional interface;189
6.7.2.1;Transport properties of plant cuticles;190
6.7.2.1.1;Organic non-electrolytes;190
6.7.2.1.2;Water;191
6.7.2.1.3;Ions;193
6.7.2.2;Wax movement: a simple solution?;193
6.7.2.2.1;‘Pores’ or ‘microchannels’;193
6.7.2.2.2;Lipid transfer proteins;194
6.7.2.2.3;Wax transport via diffusion;194
6.7.2.3;Interactions with the biotic and abiotic environment;195
6.7.2.4;Water repellency and self-cleaning property;196
6.7.2.4.1;Water repellency;196
6.7.2.4.2;Influence of biotic and non-biotic factors on water repellency;196
6.7.2.4.3;Self-cleaning property: the ‘lotus-effect’;197
6.7.2.5;Biomechanical properties;200
6.7.3;Acknowledgements;202
6.7.4;References;202
7;Part III Evolution of Anatomical Physiology;210
7.1;11 Falling atmospheric CO2 – the key to megaphyll leaf origins;212
7.1.1;Introduction;212
7.1.2;A mechanism coupling Devonian megaphyll evolution with falling CO[sub(2)]2;214
7.1.3;Early evolution of the megaphyll leaf;217
7.1.4;Quantifying the trends in early megaphyll leaf evolution;223
7.1.5;Discussion;225
7.1.6;Acknowledgements;226
7.1.7;References;226
7.2;12 Stomatal function and physiology;232
7.2.1;Introduction;232
7.2.2;Stomatal control of leaf gas exchange;233
7.2.3;Role of stomata in leaf gas exchange;237
7.2.4;Heterogeneity in stomatal characters;239
7.2.5;Effect of environmental variables on stomata and photosynthesis;240
7.2.5.1;Stomatal response to CO[sub(2)];241
7.2.5.2;Stomatal response to humidity;243
7.2.5.3;Stomatal response to light;245
7.2.6;Environmental interactions and stomatal responses;248
7.2.7;Modern techniques for ecophysiological stomatal research;250
7.2.8;Evolutionary context;251
7.2.9;Conclusion;252
7.2.10;Acknowledgements;253
7.2.11;References;253
7.3;13 The photosynthesis.transpiration compromise and other aspects of leaf morphology and leaf functioning within an evolutionary and ecological context of changes inƒ;258
7.3.1;Introduction;259
7.3.2;‘Trade-off’ between photosynthesis and transpiration;259
7.3.2.1;Desert plants;259
7.3.2.2;Stomatal response to atmospheric CO[sub(2)];260
7.3.2.3;Analysis of the ‘trade-off’ response within a broader context;261
7.3.3;Modern Mediterranean ecosystems;261
7.3.3.1;Dry season;261
7.3.3.2;Wet season;262
7.3.4;Prevention of wetting of leaves by rain and facilitation of drying;262
7.3.4.1;Dripping tip of leaves and position of the leaf;262
7.3.4.2;Wettability of leaves;263
7.3.4.3;Avoidance of direct contact between water film and stomata: effect of a hair layer and stomatal wax plugs;263
7.3.4.4;Further ecological consequences: effect of fungal leaf pathogens and ion leaching;264
7.3.5;Drying of wet leaves by evaporation;264
7.3.5.1;Formulation of the rate of drying of a wet surface;264
7.3.5.2;Ecological consequences of leaf morphology on the rate of drying of wet leaves;268
7.3.6;Adaptive changes in leaf morphology in relation to the ‘trade-off’ between photosynthesis and transpiration;269
7.3.7;Final remarks;270
7.3.8;Acknowledgements;270
7.3.9;References;271
7.4;14 Xylem hydraulics and angiosperm success: a test using broad-leafed species;274
7.4.1;Introduction;274
7.4.2;Materials and methods;276
7.4.2.1;Choice of species;276
7.4.2.2;Physiological studies;276
7.4.2.2.1;Water relations;276
7.4.2.2.2;Photosynthesis studies;277
7.4.3;Results;278
7.4.4;Discussion;281
7.4.5;References;285
7.5;15 Evolution of xylem physiology;288
7.5.1;Introduction;288
7.5.1.1;‘Trade-off’ triangle;289
7.5.1.2;Early beginnings;289
7.5.2;Distribution of wood anatomical features;290
7.5.2.1;Vessel element perforations;290
7.5.2.2;Diameter, density and length of vessels;292
7.5.2.3;Ecological preferences in modern woods;292
7.5.2.3.1;Type 1;292
7.5.2.3.2;Type 2;292
7.5.2.3.3;Type 3;293
7.5.2.3.4;Type 4;294
7.5.2.3.5;Type 5;294
7.5.3;Geological record;295
7.5.4;Experimental work;298
7.5.4.1;Conductive efficiency versus vulnerability to embolism;298
7.5.4.2;Conductive efficiency versus mechanical strength;302
7.5.4.3;Cohesion–tension theory and sap ascent;304
7.5.4.4;Mechanical strength, implosion resistance and resistance to embolism;304
7.5.4.5;Roots versus stems;305
7.5.4.6;Parenchyma;305
7.5.5;Towards a synthesis: the evolution of hydraulic structure and function;305
7.5.6;Acknowledgements;306
7.5.7;References;306
7.6;16 Hydraulics and mechanics of plants: novelty, innovation and evolution;312
7.6.1;Introduction;312
7.6.2;Terminology and evolution;313
7.6.3;Turgor;315
7.6.4;The hypodermal sterome;316
7.6.5;Secondary growth;319
7.6.5.1;Does the appearance of the bifacial vascular cambium represent a key innovation?;324
7.6.6;Lignification and biomechanics of the plant cell wall;325
7.6.7;Reaction wood;327
7.6.8;Hydraulics, mechanics and evolution of the climbing habit;329
7.6.8.1;Types of climbing strategy;329
7.6.8.2;Appearance of the lianoid habit;329
7.6.8.3;Vessels and the climbing habit;330
7.6.8.4;What is special about lianas?;333
7.6.9;Conclusions;333
7.6.10;Acknowledgements;336
7.6.11;References;336
7.7;17 Becoming fruitful and diversifying: DNA sequence phylogenetics and reproductive physiology of land plants;342
7.7.1;Introduction;342
7.7.2;Reproductive ‘Physiology’;344
7.7.3;Sexual incompatibility systems;347
7.7.3.1;Self-incompatibility (SI) as a defining angiosperm characteristic;347
7.7.3.2;SI acting at the stigma;348
7.7.3.3;SI acting in the style;349
7.7.3.4;SI in euasterid I;350
7.7.3.5;Alternative kinds of SI;351
7.7.3.6;Heteromorphic SI;351
7.7.3.7;Self-compatibility;352
7.7.4;Conclusion;352
7.7.5;References;353
7.8;18 Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils;358
7.8.1;Introduction;359
7.8.2;Dispersal biology;359
7.8.2.1;Abiotic – plumes;359
7.8.2.2;Abiotic – wings;359
7.8.2.3;Abiotic – dust and microseeds;361
7.8.2.4;Abiotic – flotation;362
7.8.2.5;Biotic – dry fruits and seeds;362
7.8.2.6;Biotic – spines;363
7.8.2.7;Biotic – fleshy tissues;363
7.8.3;Germination and establishment;364
7.8.3.1;Embryo and endosperm;364
7.8.3.1.1;Radicle emergence;364
7.8.3.1.2;Embryo and endosperm development, dormancy and establishment;364
7.8.3.1.3;Embryo and endosperm in the order Myrtales;366
7.8.3.1.4;Embryo, endosperm and seed internal organization in the order Zingiberales;367
7.8.3.2;Seedlings;367
7.8.3.2.1;Vivipary in Rhizophoraceae;367
7.8.3.2.2;Vivipary in Nypa;368
7.8.3.2.3;Other seedlings;369
7.8.3.3;Dormancy versus germination;369
7.8.3.4;Chemical composition of resistant layers;371
7.8.4;Conclusions;376
7.8.5;Acknowledgements;378
7.8.6;References;378
7.8.7;Appendix 18.1 Palaeogene Plumed Disseminules;387
7.8.7.1;Apocynospermum-like plumes;387
7.8.7.2;Other plumes;387
7.8.8;Appendix 18.2 Palaeogene Winged Disseminules;387
7.8.8.1;Betulaceae (see review in Chen et al., 1999 and also Takhtajan, 1982);388
7.8.8.2;Juglandaceae (see Manchester, 1987, 1989a; Budantsev, 1994);388
7.8.8.3;Oleaceae;389
7.8.8.4;Tiliaceae and Tilioideae;389
7.8.8.5;Ulmaceae;389
7.8.8.6;Aceraceae/Sapindaceae;389
7.8.8.7;Caprifoliaceae;390
7.8.8.8;Other winged disseminules;390
7.8.8.8.1;One-sided lateral wings;390
7.8.8.8.2;Encircling wings;390
7.8.8.8.3;Bilateral wings;391
7.8.8.8.4;Multiple wings (‘helicopters/propellers’);392
7.8.8.8.5;Multiple wings (longitudinally arranged);392
8;Part IV Evolution of Environmental and Ecosystem Physiology;394
8.1;19 The rise and fall of the Podocarpaceae in Australia – a physiological explanation;396
8.1.1;Introduction;396
8.1.1.1;A physiological approach to the interpretation of the fossil record;397
8.1.2;The fossil record of the Podocarpaceae;397
8.1.2.1;Podocarpaceae diversity through time;398
8.1.3;Adaptation to low light;401
8.1.3.1;Cretaceous forest structure at high southern latitudes;404
8.1.4;Constraints on extant Podocarpaceae distributions;404
8.1.5;Synthesis;409
8.1.6;Acknowledgements;411
8.1.7;References;411
8.2;20 The adaptive physiology of Metasequoia to Eocene high-latitude environments;416
8.2.1;Introduction;416
8.2.2;Background;417
8.2.2.1;The Eocene lowland forests of Axel Heiberg Island;417
8.2.2.2;Metasequoia: fossil and living;421
8.2.3;Physiological challenges of a high-latitude, continuous-light environment;422
8.2.3.1;Adaptations to Arctic light regimes;422
8.2.3.2;Carbon balance physiology;423
8.2.3.3;Site dominance;424
8.2.3.4;Photoprotection;425
8.2.3.5;Water balance;425
8.2.4;Comparative ecophysiology of Metasequoia glyptostroboides;425
8.2.4.1;Foliar morphology and crown architecture;426
8.2.4.2;Photosynthetic light-response;430
8.2.4.3;Water-use efficiency: direct measurements and stable isotope data;432
8.2.4.4;Photosynthetic and accessory pigments;434
8.2.5;Summary: a conceptual model for the success of Metasequoia in Eocene high-Arctic forests;435
8.2.6;Acknowledgements;436
8.2.7;References;436
8.3;21 Experimental evaluation of photosystem parameters and their role in the evolution of stand structure and deciduousness in response to palaeoclimate seasonality inƒ;442
8.3.1;Introduction;442
8.3.2;Materials and methods;446
8.3.2.1;Gas-exchange measurements;446
8.3.2.2;Stand structure;447
8.3.2.3;Fossil evidence;448
8.3.2.4;Light measurements;449
8.3.2.5;Seedling germination study;449
8.3.3;Results;450
8.3.3.1;Light environment;450
8.3.3.2;Gas exchange;450
8.3.3.3;Stand structure;453
8.3.3.4;Seedling germination;454
8.3.4;Discussion;454
8.3.5;Acknowledgements;458
8.3.6;References;458
8.4;22 Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates – a neobotanical overview;462
8.4.1;Introduction;462
8.4.2;The modern array of low-nutrient habitats;463
8.4.3;The modern diversity of ALVP colonists of low-nutrient habitats;465
8.4.3.1;Taxonomic distribution;465
8.4.3.2;Habitat distribution;465
8.4.3.3;Responses to cultivation;469
8.4.4;Discussion;471
8.4.4.1;Advantages of low-nutrient toleration for survival of ALVPs;472
8.4.4.2;Ancientness of low-nutrient toleration;473
8.4.5;Theoretical perspectives;475
8.4.6;Conclusions;476
8.4.7;Acknowledgements;476
8.4.8;References;476
8.5;23 The evolution of aluminium accumulation in angiosperms;482
8.5.1;Aluminium in the environment and its toxicity for plants;482
8.5.2;What are Al accumulators?;483
8.5.3;The distribution of Al accumulators in flowering plants;484
8.5.4;Al accumulation: a useful character in plant systematics;485
8.5.5;The ecology of Al accumulators;487
8.5.6;The evolution of heavy metal accumulation;489
8.5.7;The wider relevance of studies on Al accumulation;490
8.5.8;General conclusion;490
8.5.9;Acknowledgements;491
8.5.10;References;491
9;Index;496
9.1;A;496
9.2;B;497
9.3;C;497
9.4;D;499
9.5;E;499
9.6;F;500
9.7;G;500
9.8;H;500
9.9;I;501
9.10;J;501
9.11;K;501
9.12;L;501
9.13;M;502
9.14;N;503
9.15;O;503
9.16;P;503
9.17;Q;505
9.18;R;505
9.19;S;505
9.20;T;506
9.21;U;507
9.22;V;507
9.23;W;507
9.24;X;507
9.25;Y;507
9.26;Z;507
10;Colour Plates;508