Buch, Englisch, 208 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 554 g
Buch, Englisch, 208 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 554 g
ISBN: 978-1-107-01935-5
Verlag: Cambridge University Press
The common cause principle says that every correlation is either due to a direct causal effect linking the correlated entities or is brought about by a third factor, a so-called common cause. The principle is of central importance in the philosophy of science, especially in causal explanation, causal modeling and in the foundations of quantum physics. Written for philosophers of science, physicists and statisticians, this book contributes to the debate over the validity of the common cause principle, by proving results that bring to the surface the nature of explanation by common causes. It provides a technical and mathematically rigorous examination of the notion of common cause, providing an analysis not only in terms of classical probability measure spaces, which is typical in the available literature, but in quantum probability theory as well. The authors provide numerous open problems to further the debate and encourage future research in this field.
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Wissenschaften: Theorie, Epistemologie, Methodik
- Geisteswissenschaften Philosophie Wissenschaftstheorie, Wissenschaftsphilosophie
- Naturwissenschaften Physik Quantenphysik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Human- und Sozialwissenschaften
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Geisteswissenschaften Geschichtswissenschaft Geschichtliche Themen Wissenschafts- und Universitätsgeschichte
Weitere Infos & Material
Preface; 1. Introduction and overview; 2. The common cause principle; 3. Common cause extendability of probability spaces; 4. Causally closed probability theories; 5. Common common causes; 6. Common cause extendability of non-classical probability spaces; 7. Reichenbachian common cause systems; 8. Causal closedness of quantum field theory; 9. Reichenbach's common cause principle and EPR correlations; 10. Where do we stand?; Appendix; Index.