Buch, Englisch, 454 Seiten, Format (B × H): 220 mm x 280 mm, Gewicht: 1128 g
Buch, Englisch, 454 Seiten, Format (B × H): 220 mm x 280 mm, Gewicht: 1128 g
ISBN: 978-1-108-70529-5
Verlag: Cambridge University Press
If you are a biologist and want to get the best out of the powerful methods of modern computational statistics, this is your book. You can visualize and analyze your own data, apply unsupervised and supervised learning, integrate datasets, apply hypothesis testing, and make publication-quality figures using the power of R/Bioconductor and ggplot2. This book will teach you 'cooking from scratch', from raw data to beautiful illuminating output, as you learn to write your own scripts in the R language and to use advanced statistics packages from CRAN and Bioconductor. It covers a broad range of basic and advanced topics important in the analysis of high-throughput biological data, including principal component analysis and multidimensional scaling, clustering, multiple testing, unsupervised and supervised learning, resampling, the pitfalls of experimental design, and power simulations using Monte Carlo, and it even reaches networks, trees, spatial statistics, image data, and microbial ecology. Using a minimum of mathematical notation, it builds understanding from well-chosen examples, simulation, visualization, and above all hands-on interaction with data and code.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Mathematik für Naturwissenschaftler
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie
Weitere Infos & Material
Introduction; 1. Generative models for discrete data; 2. Statistical modeling; 3. High-quality graphics in R; 4. Mixture models; 5. Clustering; 6. Testing; 7. Multivariate analysis; 8. High-throughput count data; 9. Multivariate methods for heterogeneous data; 10. Networks and trees; 11. Image data; 12. Supervised learning; 13. Design of high-throughput experiments and their analyses; Statistical concordance; Bibliography; Index.