Buch, Englisch, 179 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g
ISBN: 978-3-030-36531-8
Verlag: Springer International Publishing
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies.
It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory.
The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Alternative und erneuerbare Energien
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Energie- & Versorgungswirtschaft Energiewirtschaft: Alternative & Erneuerbare Energien
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
Weitere Infos & Material
Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory