Hong | Hybrid Intelligent Technologies in Energy Demand Forecasting | Buch | 978-3-030-36531-8 | sack.de

Buch, Englisch, 179 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Hong

Hybrid Intelligent Technologies in Energy Demand Forecasting


1. Auflage 2020
ISBN: 978-3-030-36531-8
Verlag: Springer International Publishing

Buch, Englisch, 179 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

ISBN: 978-3-030-36531-8
Verlag: Springer International Publishing


This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. 

It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. 

The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.


Hong Hybrid Intelligent Technologies in Energy Demand Forecasting jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Modeling for Energy Demand Forecasting.-  Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory 


Wei-Chiang Hong is a professor in the Department of Information Management at the Oriental Institute of Technology, Taiwan. His research interests are focused on hybridized meta-heuristic algorithms (the genetic algorithm, simulated annealing algorithm, immune algorithm, particle swarm optimization algorithm, ant colony / artificial bee colony optimization algorithm, cuckoo search algorithm, bat algorithm, dragonfly algorithm, etc.) together with the chaotic mapping mechanism, quantum computing mechanism, recurrent neural networks, seasonal mechanism, phase space reconstruction, and recurrence plot theory in the support vector regression (SVR) model, the goal being to provide more accurate forecasting performance by determining the suitable parameters of an SVR model. In this regard, the author has gathered substantial practical experience using hybrid meta-heuristic algorithms with intelligent technologies to improve forecasting accuracy.





Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.