Buch, Englisch, 97 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 399 g
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
Buch, Englisch, 97 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 399 g
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
ISBN: 978-3-031-64372-9
Verlag: Springer International Publishing
This book presents algorithms and tools that are designed to model and extract information from personal contact networks, which represent which individuals in a population are physically in contact with one another. The authors developed these tools based on research they conducted during the COVID-19 pandemic, with the goal of improving responses to epidemics in the future. The book provides methods for modelling the transmission of infection across a population. The authors explain how an epidemic model can be used to strategically distribute vaccines and minimize the spread of a virus. The book shows how evolutionary computation, graph compression, and network induction can be utilized to manage issues that arise from an epidemic.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Public Health, Gesundheitsmanagement, Gesundheitsökonomie, Gesundheitspolitik
Weitere Infos & Material
Chapter 1 Introduction.- Chapter 2 Evolutionary Computation.- Chapter 3 Graph Compression.- Chapter 4 Network Induction.